New Modeling and Solution Paradigms for Transportation Problems with Applications to Railroads

运输问题的新建模和解决方案及其在铁路中的应用

基本信息

  • 批准号:
    1200616
  • 负责人:
  • 金额:
    $ 23.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-15 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

To provide services, industries and the government rely heavily on their ability to efficiently transport goods. In their simplest form, transportation problems can be solved efficiently using traditional optimization algorithms. However, practical applications often exhibit a variety of additional combinatorial requirements that necessitate involved modeling, often in the form of integer programs. This modeling is often seen as unnatural by practitioners and results in models that are difficult to solve with state-of-the-art commercial software. The research objective of this award is to develop a new modeling and solution paradigm for such transportation problems. In this paradigm, a few key constructs are identified that allow the user to succinctly impose often-occurring combinatorial constraints without the need to formulate them using integer programming. These constructs can then be exploited to design more efficient exact and heuristic solution methodologies that take advantage of the structure of the network and of the combinatorial requirements. The research will also seek to demonstrate the advantages of this paradigm on practical problems emanating from bulk delivery in railroads. If successful, this research will result in an integrated modeling and solution paradigm that will provide faster solutions to larger transportation problems and that will bring within the range of tractability many practically relevant problems that are currently intractable. It will lead to solutions where transportation costs and miles are reduced and will therefore improve the efficiency of industries relying on transportation. Results will be disseminated timely via conferences, publications and a dedicated internet page that will contain relevant models, stylized applications and prototype implementations. Undergraduate and graduate students will also benefit from this award through the development of course material and involvement in research.
为了提供服务,工业和政府在很大程度上依赖于他们有效运输货物的能力。在最简单的形式中,运输问题可以使用传统的优化算法有效地解决。然而,实际的应用程序往往表现出各种额外的组合要求,需要涉及的建模,往往是整数规划的形式。这种建模通常被实践者视为不自然的,并且导致难以用最先进的商业软件解决的模型。该奖项的研究目标是为此类交通问题开发新的建模和解决方案范例。在这个范例中,确定了一些关键的结构,允许用户简洁地施加经常发生的组合约束,而不需要制定它们使用整数规划。然后,这些结构可以被利用来设计更有效的精确和启发式的解决方案的方法,利用网络的结构和组合的要求。 该研究还将寻求证明这种范式在解决铁路散装运输产生的实际问题方面的优势。如果成功的话,这项研究将导致一个集成的建模和解决方案的范例,将提供更快的解决方案,以更大的运输问题,并将在可处理的范围内,目前棘手的许多实际相关的问题。它将导致解决方案,减少运输成本和里程,从而提高依赖运输的行业的效率。将通过会议、出版物和一个专门的互联网网页及时传播成果,该网页将载有相关模型、程式化应用程序和原型实施。本科生和研究生也将通过课程材料的开发和参与研究从这个奖项中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Philippe Richard其他文献

Jean-Philippe Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Philippe Richard', 18)}}的其他基金

D-ISN/Collaborative Research: Disrupting West Virginia's Opioid Crisis: a Multi-disciplinary Approach through Interdiction and Harm Reduction
D-ISN/合作研究:扰乱西弗吉尼亚州的阿片类药物危机:通过拦截和减少危害采取多学科方法
  • 批准号:
    2240361
  • 财政年份:
    2023
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
  • 批准号:
    1917323
  • 财政年份:
    2018
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Relaxations for Cardinality-constrained Optimization Problems with Applications in Network Interdiction and Data Analysis
协作研究:基数约束优化问题的新颖松弛及其在网络拦截和数据分析中的应用
  • 批准号:
    1728031
  • 财政年份:
    2017
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Tighter Relaxations for Complementarity Constraints with Applications to Nonlinear and Bilevel Programming
协作研究:互补约束的新颖更严格松弛及其在非线性和双层规划中的应用
  • 批准号:
    1235236
  • 财政年份:
    2012
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Generating Stronger Cuts for Nonlinear Programs Via Orthogonal Disjunctions and Lifting Techniques
协作研究:通过正交析取和提升技术为非线性程序生成更强的削减
  • 批准号:
    0856605
  • 财政年份:
    2009
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
  • 批准号:
    0958824
  • 财政年份:
    2009
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Continuing Grant
CAREER: Improving the Optimization and Re-Optimization of Mixed Integer Programs through the Study of Continuous Variables
职业:通过连续变量的研究改进混合整数程序的优化和重新优化
  • 批准号:
    0348611
  • 财政年份:
    2004
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

To design a solution to determine a solid foundation to discover the carbon footprint impact in business modeling for concept development
设计解决方案,为发现概念开发的业务建模中的碳足迹影响奠定坚实的基础
  • 批准号:
    10045761
  • 财政年份:
    2022
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Grant for R&D
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
  • 批准号:
    RGPIN-2018-05289
  • 财政年份:
    2022
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale Modeling of Macromolecular Liquids, and Macromolecules in Solution
高分子液体和溶液中高分子的多尺度建模
  • 批准号:
    2154999
  • 财政年份:
    2022
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Continuing Grant
Modeling and Solution Algorithms for Process and Operations Planning with Applications in Manufacturing and Related Sectors
流程和运营规划的建模和解决算法及其在制造和相关领域的应用
  • 批准号:
    RGPIN-2021-02983
  • 财政年份:
    2022
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Discovery Grants Program - Individual
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
  • 批准号:
    RGPIN-2018-05289
  • 财政年份:
    2021
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Solution Algorithms for Process and Operations Planning with Applications in Manufacturing and Related Sectors
流程和运营规划的建模和解决算法及其在制造和相关领域的应用
  • 批准号:
    RGPIN-2021-02983
  • 财政年份:
    2021
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Discovery Grants Program - Individual
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
  • 批准号:
    RGPIN-2018-05289
  • 财政年份:
    2020
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental and modeling study of the aqueous solubility of vanadium(V) incorporated by solid solution in apatite phases
磷灰石相固溶体中钒(V)水溶性的实验和模型研究
  • 批准号:
    445811061
  • 财政年份:
    2020
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Research Grants
New paradigms for rigorous modeling and fast solution of large-scale EMC problems
大规模 EMC 问题的严格建模和快速解决方案的新范例
  • 批准号:
    RGPIN-2018-05289
  • 财政年份:
    2019
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive Modeling of Multi-Solute Adsorption Equilibrium based on Adsorbed Solution Theories
基于吸附溶液理论的多溶质吸附平衡预测模型
  • 批准号:
    1804708
  • 财政年份:
    2018
  • 资助金额:
    $ 23.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了