RUI: Fast and Robust Non-Destructive Testing of Cylindrical Composite Components Based on Microwave Measurements

RUI:基于微波测量的圆柱形复合材料部件的快速、稳健的无损检测

基本信息

  • 批准号:
    1920098
  • 负责人:
  • 金额:
    $ 35.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Despite the rapid and significant growth in the use of composite and non-metallic components, fast and robust non-destructive testing of these materials is still an unfulfilled requirement. In particular, composite pipes are rapidly replacing metallic pipes in the oil and gas industry to combat corrosion. However, traditional non-destructive testing techniques cannot be employed for assessment of these components made of composite materials, due to the challenge of ultrasonic testing and other methods suitable for metallic components but not for composite materials. Thus, to bridge this gap, in this project, microwave imaging technology will be employed for volumetric inspection of cylindrical composite components and concentric pipes. The imaging technology is fast and reliable, and it can be employed for inspection of a vast range of composite materials in various applications. This novel technology can provide crucial material integrity data that could help reduce costs, increase system safety, and reduce the risk of component failures. Implementation of this project will significantly enhance the infrastructure for research and education at New York Institute of Technology. The equipment acquired for this project will be used to develop a research and education program in the field of microwave/antenna engineering. Graduate and undergraduate students, including females and individuals from minority groups underrepresented in the electrical engineering field, will receive practical training in antenna and microwave design using state-of-the-art hardware and software, and thus acquire a unique skill set that prepares them for the demands of the national high-tech industry. These activities have positive and societally relevant outcomes for minorities and women, helping to remove barriers to participation in electrical engineering and engineering education in general.The proposed microwave imaging technique is based on holographic imaging concepts already proved successful in security screening and other applications. These techniques are fast and robust to noise. They will be modified for applications such as non-destructive testing of composite pipes, in which the objects are in the extreme near-field of the antennas whose physical size cannot be ignored. In contrast to previous near-field holographic imaging techniques, the modified techniques using circular deconvolution concept will address the periodicity of the functions along the azimuthal direction in a cylindrical imaging setup. Furthermore, the solution process in near-field holography will be improved to reduce underestimation of features that are farther away from the antennas. This improvement will be implemented via an approach originally used for electroencephalography (EEG)-based brain source localization. Furthermore, novel microwave tomography techniques will be studied to alleviate the limitations imposed by the use of Born approximation in holographic techniques. In this task, holographic techniques will be combined with nonlinear imaging approaches to devise new microwave tomography techniques that are efficient in terms of cost and time. This will allow inspection of larger and higher contrast defects. Two configurations will be studied for imaging: (1) wideband single-receiver antennas and (2) narrow-band multiple-receiver antennas. Parameters affecting resolution in each configuration, including number of frequencies, number of antennas, angular distance between antennas, and radial distance between imaged surfaces, will be studied. Validity of the proposed techniques will be demonstrated via simulation and experimental setups. In addition, a compact and cost-effective imaging setup will be developed using RF data acquisition circuitry and custom-designed antenna arrays. This new microwave inspection technology can potentially revolutionize the non-destructive testing of composite and non-metallic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管复合材料和非金属部件的使用快速而显著地增长,但这些材料的快速而稳健的无损检测仍然是一个未满足的要求。特别是在石油和天然气工业中,复合材料管道正在迅速取代金属管道以对抗腐蚀。然而,传统的无损检测技术不能用于评估这些由复合材料制成的部件,这是由于超声波检测和其他适用于金属部件但不适用于复合材料的方法的挑战。因此,为了弥补这一差距,在本项目中,微波成像技术将用于圆柱形复合材料部件和同心管道的体积检测。该成像技术快速可靠,可用于各种应用中各种复合材料的检测。这项新技术可以提供关键的材料完整性数据,有助于降低成本,提高系统安全性,并降低组件故障的风险。该项目的实施将大大加强纽约理工学院的研究和教育基础设施。为该项目获得的设备将用于开发微波/天线工程领域的研究和教育计划。研究生和本科生,包括女性和来自电气工程领域代表性不足的少数群体的个人,将使用最先进的硬件和软件接受天线和微波设计的实践培训,从而获得一套独特的技能,为国家高科技产业的需求做好准备。这些活动对少数民族和妇女产生了积极的和与社会相关的成果,有助于消除参与电气工程和工程教育的障碍。拟议的微波成像技术是基于全息成像概念,已经在安全检查和其他应用中证明是成功的。这些技术是快速和鲁棒的噪声。将对它们进行修改,用于复合管的无损检测等应用,其中物体处于天线的极端近场,其物理尺寸不可忽略。与以前的近场全息成像技术相比,使用圆形去卷积概念的修改后的技术将解决圆柱形成像设置中沿着方位角方向的函数的周期性。此外,将改进近场全息的求解过程,以减少对远离天线的特征的低估。这种改进将通过最初用于基于脑电图(EEG)的脑源定位的方法来实现。此外,将研究新的微波层析成像技术,以减轻全息技术中使用玻恩近似所带来的限制。在这项任务中,全息技术将与非线性成像方法相结合,以设计新的微波层析成像技术,在成本和时间方面是有效的。这将允许检查更大和更高对比度的缺陷。将研究两种配置用于成像:(1)宽带单接收器天线和(2)窄带多接收器天线。将研究影响每种配置中分辨率的参数,包括频率数、天线数、天线之间的角距离和成像表面之间的径向距离。所提出的技术的有效性将通过模拟和实验装置证明。此外,还将使用RF数据采集电路和定制设计的天线阵列开发一种紧凑且具有成本效益的成像装置。这项新的微波检测技术可能会彻底改变复合材料和非金属材料的无损检测。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-Field Imaging of Dielectric Components Using an Array of Microwave Sensors
使用微波传感器阵列对电介质元件进行近场成像
  • DOI:
    10.3390/electronics12061507
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gao, Yuki;Ravan, Maryam;Amineh, Reza K.
  • 通讯作者:
    Amineh, Reza K.
Fast, Robust, and Low-Cost Microwave Imaging of Multiple Non-Metallic Pipes
  • DOI:
    10.3390/electronics10151762
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gao, Yuki;Ravan, Maryam;Amineh, Reza K.
  • 通讯作者:
    Amineh, Reza K.
Non-Destructive Testing of Non-Metallic Concentric Pipes Using Microwave Measurements
使用微波测量对非金属同心管进行无损检测
Microwave Holographic Imaging of Non-Metallic Concentric Pipes
非金属同心管的微波全息成像
Fast and Cost-Effective Three-Dimensional Microwave Imaging Using a Cylindrical Setup
使用圆柱形装置进行快速且经济高效的三维微波成像
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Khalaj Amineh其他文献

Reza Khalaj Amineh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于FAST搜寻及观测的脉冲星多波段辐射机制研究
  • 批准号:
    12403046
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
FAST连续观测数据处理的pipeline开发
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
  • 批准号:
    12373012
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
  • 批准号:
    12373109
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
  • 批准号:
    12373001
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于FAST的纳赫兹引力波研究
  • 批准号:
    LY23A030001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
  • 批准号:
    2339701
  • 财政年份:
    2024
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
  • 批准号:
    2228028
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Fast Precision Robust Control of Resonant Flexible Systems
谐振柔性系统的快速精确鲁棒控制
  • 批准号:
    DP230102443
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Discovery Projects
Exploiting Geometries of Learning for Fast, Adaptive and Robust AI
利用学习几何实现快速、自适应和鲁棒的人工智能
  • 批准号:
    DP230101176
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Discovery Projects
Fast and Robust Deep Learning for Medical imaging: Segmentation and Registration methods invariant to contrast and resolution
快速、鲁棒的医学成像深度学习:对比度和分辨率不变的分割和配准方法
  • 批准号:
    10733935
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
  • 批准号:
    10545512
  • 财政年份:
    2022
  • 资助金额:
    $ 35.95万
  • 项目类别:
TrustBuilder.AI: fast, robust, and explainable deep learning
TrustBuilder.AI:快速、稳健且可解释的深度学习
  • 批准号:
    568643-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Alliance Grants
CAREER: Facile molecular computation and diagnostics via fast, robust, and reconfigurable DNA circuits
职业:通过快速、稳健且可重新配置的 DNA 电路进行简便的分子计算和诊断
  • 批准号:
    2143227
  • 财政年份:
    2022
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
Fast and Robust Algorithms with Partial Data Access
具有部分数据访问功能的快速、稳健的算法
  • 批准号:
    2228814
  • 财政年份:
    2022
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
TrustBuilder.AI: fast, robust, and explainable deep learning
TrustBuilder.AI:快速、稳健且可解释的深度学习
  • 批准号:
    568643-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了