RUI: Fast and Robust Non-Destructive Testing of Cylindrical Composite Components Based on Microwave Measurements

RUI:基于微波测量的圆柱形复合材料部件的快速、稳健的无损检测

基本信息

  • 批准号:
    1920098
  • 负责人:
  • 金额:
    $ 35.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Despite the rapid and significant growth in the use of composite and non-metallic components, fast and robust non-destructive testing of these materials is still an unfulfilled requirement. In particular, composite pipes are rapidly replacing metallic pipes in the oil and gas industry to combat corrosion. However, traditional non-destructive testing techniques cannot be employed for assessment of these components made of composite materials, due to the challenge of ultrasonic testing and other methods suitable for metallic components but not for composite materials. Thus, to bridge this gap, in this project, microwave imaging technology will be employed for volumetric inspection of cylindrical composite components and concentric pipes. The imaging technology is fast and reliable, and it can be employed for inspection of a vast range of composite materials in various applications. This novel technology can provide crucial material integrity data that could help reduce costs, increase system safety, and reduce the risk of component failures. Implementation of this project will significantly enhance the infrastructure for research and education at New York Institute of Technology. The equipment acquired for this project will be used to develop a research and education program in the field of microwave/antenna engineering. Graduate and undergraduate students, including females and individuals from minority groups underrepresented in the electrical engineering field, will receive practical training in antenna and microwave design using state-of-the-art hardware and software, and thus acquire a unique skill set that prepares them for the demands of the national high-tech industry. These activities have positive and societally relevant outcomes for minorities and women, helping to remove barriers to participation in electrical engineering and engineering education in general.The proposed microwave imaging technique is based on holographic imaging concepts already proved successful in security screening and other applications. These techniques are fast and robust to noise. They will be modified for applications such as non-destructive testing of composite pipes, in which the objects are in the extreme near-field of the antennas whose physical size cannot be ignored. In contrast to previous near-field holographic imaging techniques, the modified techniques using circular deconvolution concept will address the periodicity of the functions along the azimuthal direction in a cylindrical imaging setup. Furthermore, the solution process in near-field holography will be improved to reduce underestimation of features that are farther away from the antennas. This improvement will be implemented via an approach originally used for electroencephalography (EEG)-based brain source localization. Furthermore, novel microwave tomography techniques will be studied to alleviate the limitations imposed by the use of Born approximation in holographic techniques. In this task, holographic techniques will be combined with nonlinear imaging approaches to devise new microwave tomography techniques that are efficient in terms of cost and time. This will allow inspection of larger and higher contrast defects. Two configurations will be studied for imaging: (1) wideband single-receiver antennas and (2) narrow-band multiple-receiver antennas. Parameters affecting resolution in each configuration, including number of frequencies, number of antennas, angular distance between antennas, and radial distance between imaged surfaces, will be studied. Validity of the proposed techniques will be demonstrated via simulation and experimental setups. In addition, a compact and cost-effective imaging setup will be developed using RF data acquisition circuitry and custom-designed antenna arrays. This new microwave inspection technology can potentially revolutionize the non-destructive testing of composite and non-metallic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管复合材料和非金属组件的使用迅速而显着增长,但对这些材料的快速和稳健的非破坏性测试仍然是一项尚未满足的要求。特别是,复合管正在迅速替换石油和天然气行业中的金属管以对抗腐蚀。但是,由于超声测试的挑战和其他适合金属组件的方法,因此不能使用传统的非破坏性测试技术来评估这些组件,但不能用于复合材料。因此,为了弥合这个差距,在这个项目中,将采用微波成像技术来对圆柱复合组件和同心管道进行体积检查。成像技术是快速可靠的,可以在各种应用中检查广泛的复合材料。这项新型技术可以提供重要的材料完整性数据,以帮助降低成本,提高系统安全性并降低组件故障的风险。该项目的实施将大大增强纽约理工学院的研究和教育基础设施。该项目获得的设备将用于制定微波/天线工程领域的研究和教育计划。毕业生和本科生,包括在电气工程领域中人数不足的女性和个人的个人,将使用最先进的硬件和软件在天线和微波设计中进行实践培训,从而获得了独特的技能,为他们提供了为国家高科技行业的需求做好准备的。这些活动对少数群体和妇女具有积极和社会相关的成果,有助于消除参与电气工程和工程教育的障碍。拟议的微波成像技术基于已经被证明在安全筛查和其他应用中成功的全息图像概念。这些技术对噪音非常快,强大。它们将被修改为诸如复合管的非破坏性测试之类的应用,其中对象位于天线的极端近场,其物理大小不容忽视。与以前的近场全息成像技术相反,使用圆形反卷积概念的修改技术将在圆柱成像设置中沿方位角方向沿着方位角解决功能的周期性。此外,将改善近场全息图中的溶液过程,以减少远离天线的特征的低估。这种改进将通过最初用于脑电图(EEG)的大脑源定位的方法来实施。此外,将研究新型的微波断层扫描技术,以减轻在全息技术中使用天生近似所施加的局限性。在此任务中,全息技术将与非线性成像方法相结合,以设计新的微波断层扫描技术,这些技术在成本和时间方面有效。这将允许检查较大和更高的对比缺陷。将研究两种用于成像的配置:(1)宽带单杆天线和(2)狭窄的波段多托管天线。将研究影响每种配置分辨率的参数,包括频率数,天线数量,天线之间的角度距离以及成像表面之间的径向距离。提出的技术的有效性将通过模拟和实验设置来证明。此外,将使用RF数据采集电路和定制设计的天线阵列开发紧凑且具有成本效益的成像设置。这项新的微波检查技术可以有可能彻底改变复合和非金属材料的非破坏性测试。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,认为值得通过评估值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-Field Imaging of Dielectric Components Using an Array of Microwave Sensors
使用微波传感器阵列对电介质元件进行近场成像
  • DOI:
    10.3390/electronics12061507
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gao, Yuki;Ravan, Maryam;Amineh, Reza K.
  • 通讯作者:
    Amineh, Reza K.
Fast, Robust, and Low-Cost Microwave Imaging of Multiple Non-Metallic Pipes
  • DOI:
    10.3390/electronics10151762
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gao, Yuki;Ravan, Maryam;Amineh, Reza K.
  • 通讯作者:
    Amineh, Reza K.
Microwave Holographic Imaging of Non-Metallic Concentric Pipes
非金属同心管的微波全息成像
Non-Destructive Testing of Non-Metallic Concentric Pipes Using Microwave Measurements
使用微波测量对非金属同心管进行无损检测
Fast and Cost-Effective Three-Dimensional Microwave Imaging Using a Cylindrical Setup
使用圆柱形装置进行快速且经济高效的三维微波成像
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Khalaj Amineh其他文献

Reza Khalaj Amineh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
使用FAST开展河外中性氢吸收线普查
  • 批准号:
    12373011
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
钢渣粉地聚物超高性能混凝土密实强化与快速胶凝机理
  • 批准号:
    52378230
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
  • 批准号:
    2339701
  • 财政年份:
    2024
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
  • 批准号:
    2228028
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Fast Precision Robust Control of Resonant Flexible Systems
谐振柔性系统的快速精确鲁棒控制
  • 批准号:
    DP230102443
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Discovery Projects
Exploiting Geometries of Learning for Fast, Adaptive and Robust AI
利用学习几何实现快速、自适应和鲁棒的人工智能
  • 批准号:
    DP230101176
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Discovery Projects
Fast and Robust Deep Learning for Medical imaging: Segmentation and Registration methods invariant to contrast and resolution
快速、鲁棒的医学成像深度学习:对比度和分辨率不变的分割和配准方法
  • 批准号:
    10733935
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了