Effect of Hydrogen on the Properties of Fe alloys in the Earth's Core

氢对地核铁合金性能的影响

基本信息

  • 批准号:
    1921298
  • 负责人:
  • 金额:
    $ 29.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

For more than half a century, scientists have known that the Earth's core - the 3500-km large ball of mostly iron at the center of the planet - has a density 5-10% lower than that of pure iron. This is because the core contains light elements, such as Si, O, S, C, and H. While the core cools down forming the solid inner core, light elements segregate preferentially in the liquid outer core. This process powers in part the magnetic field which shields us from the solar wind. Furthermore, knowing the composition of the core is critical to constrain its formation and evolution. Light elements in metallic iron have, thus, been extensively studied at the extreme pressure and temperature conditions of the deep Earth. However, because of experimental limitations, the effect of hydrogen on core materials is still largely unknown. Here, the researchers investigate how hydrogen affect the properties of the core. Taking advantage of recent technical developments, they study the iron-hydrogen system at the high pressure and temperature of Earth's interior. The experiments, carried out at national synchrotron facilities, quantify the melting temperature and density of iron-rich alloys. Theoretical calculations at the atomic level guide the experimental approach and the data analysis. The results improve current models of the core with implications for the understanding of its formation, evolution and present-day magnetic field, with numerous ramifications in Earth Sciences. This two-year project provides support for an early-career female scientist and a graduate student, and training opportunities for undergraduate summer interns in state-of-the art Mineral Physics. It also increases the public awareness of the important role of hydrogen in the Earth through presentations during open-house events at Arizona State University.Here, the team investigates Fe-H, Fe-Ni-H and Fe-Si-H alloys in the laser-heated diamond anvil cell (DAC), where specimens are compressed at the tips of two opposing diamonds and heated by focused laser beams. Target pressures and temperatures are up to 150 GPa (~1.5 million atm) and in excess of 2000 K. Quantifying hydrogen-iron alloys at these conditions in the DAC has been challenging because H2 tends to break the anvils on heating. The team has recently demonstrated that this issue can be overcome by pulsed laser heating. This technique, coupled with an improved X-ray detection system at synchrotron facilities, allows the researchers to quantify in situ the effect of hydrogen on the structure, equation of state, bulk modulus and melting temperatures of iron-rich alloys. Run products are investigated by electron microscopy to study their texture and the partitioning of Si and Ni among the phases in presence. Ab initio calculations guide the experimental approach and the data analysis. The key questions leading the research are: (1) Does hydrogen change the crystal structures of iron metal and alloys in the Earth's core? What is the effect of hydrogen on (2) the equations of state of iron metal and alloys and (3) their melting temperatures at core conditions?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半个多世纪以来,科学家们已经知道地核(位于地球中心的 3500 公里长、主要由铁组成的大球)的密度比纯铁低 5-10%。这是因为核心含有轻元素,例如 Si、O、S、C 和 H。当核心冷却形成固体内核时,轻元素优先在液体外核中偏析。这个过程在一定程度上为磁场提供动力,使我们免受太阳风的影响。此外,了解核心的组成对于限制其形成和演化至关重要。因此,金属铁中的轻元素在地球深处的极端压力和温度条件下得到了广泛的研究。然而,由于实验的限制,氢对核心材料的影响仍然很大程度上未知。在这里,研究人员研究了氢如何影响核心的特性。利用最新的技术发展,他们研究了地球内部高压和高温下的铁-氢系统。这些实验在国家同步加速器设施中进行,量化了富铁合金的熔化温度和密度。原子水平的理论计算指导实验方法和数据分析。这些结果改进了现有的地核模型,对理解地核的形成、演化和当今磁场具有重要意义,并对地球科学产生了许多影响。这个为期两年的项目为职业生涯早期的女科学家和研究生提供支持,并为本科生暑期实习生提供最先进的矿物物理学培训机会。它还通过在亚利桑那州立大学开放活动期间的演示,提高了公众对氢在地球中的重要作用的认识。在这里,研究小组研究了激光加热金刚石砧室 (DAC) 中的 Fe-H、Fe-Ni-H 和 Fe-Si-H 合金,其中样品在两个相对的金刚石尖端被压缩,并通过聚焦激光束加热。目标压力和温度高达 150 GPa(约 150 万大气压)且超过 2000 K。在 DAC 中的这些条件下量化氢铁合金一直具有挑战性,因为氢气在加热时往往会破坏砧座。该团队最近证明,这个问题可以通过脉冲激光加热来克服。这项技术与同步加速器设施中改进的 X 射线检测系统相结合,使研究人员能够原位量化氢对富铁合金的结构、状态方程、体积模量和熔化温度的影响。 通过电子显微镜研究运行产物,以研究其结构以及 Si 和 Ni 在存在的相中的分配。从头计算指导实验方法和数据分析。研究的关键问题是:(1)氢是否会改变地核铁金属和合金的晶体结构?氢对 (2) 铁金属和合金的状态方程以及 (3) 在核心条件下的熔化温度有何影响?该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of nickel on the high-pressure phases in FeH
  • DOI:
    10.1103/physrevb.104.224106
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    H. Piet;A. Chizmeshya;Bin Chen;S. Chariton;E. Greenberg;V. Prakapenka;S. Shim
  • 通讯作者:
    H. Piet;A. Chizmeshya;Bin Chen;S. Chariton;E. Greenberg;V. Prakapenka;S. Shim
Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K
Fe-Si-H 中稳定的六方三元合金相,在 28.6–42.2 GPa 和 3000 K 下
  • DOI:
    10.1103/physrevb.105.104111
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fu, Suyu;Chariton, Stella;Prakapenka, Vitali B.;Chizmeshya, Andrew;Shim, Sang-Heon
  • 通讯作者:
    Shim, Sang-Heon
Hydrogen solubility in FeSi alloy phases at high pressures and temperatures
  • DOI:
    10.2138/am-2022-8295
  • 发表时间:
    2022-12-16
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Fu, Suyu;Chariton, Stella;Shim, Sang-Heon
  • 通讯作者:
    Shim, Sang-Heon
Water‐Induced Diamond Formation at Earth's Core‐Mantle Boundary
地核-地幔边界处的水诱发钻石形成
  • DOI:
    10.1029/2022gl098271
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ko, Byeongkwan;Chariton, Stella;Prakapenka, Vitali;Chen, Bin;Garnero, Edward J.;Li, Mingming;Shim, Sang‐Heon
  • 通讯作者:
    Shim, Sang‐Heon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sang-Heon Shim其他文献

Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle
地幔底部具有低地震波速的大陆规模异常区
  • DOI:
    10.1038/ngeo2733
  • 发表时间:
    2016-06-20
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Edward J. Garnero;Allen K. McNamara;Sang-Heon Shim
  • 通讯作者:
    Sang-Heon Shim
Post-perovskite at ten
后钙钛矿在十
  • DOI:
    10.1038/ngeo2237
  • 发表时间:
    2014-08-28
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Sang-Heon Shim;Thorne Lay
  • 通讯作者:
    Thorne Lay
Raman spectroscopy and x-ray diffraction of phase transitions in Cr 2 O 3 to 61 GPa
  • DOI:
    10.1103/physrevb.69.144107
  • 发表时间:
    2004-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Sang-Heon Shim
  • 通讯作者:
    Sang-Heon Shim

Sang-Heon Shim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sang-Heon Shim', 18)}}的其他基金

EA: Upgrade of the Laser Heating System in the High-Pressure Diamond-Anvil Cell Laboratory at Arizona State University
EA:亚利桑那州立大学高压金刚石砧室实验室激光加热系统升级
  • 批准号:
    2335071
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Collaborative Research: From Silicate Melts Properties to the Dynamics and Evolution of an Early Basal Magma Ocean
合作研究:从硅酸盐熔体特性到早期基底岩浆洋的动力学和演化
  • 批准号:
    2153968
  • 财政年份:
    2022
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Upgrade of the Raman Spectroscopy System at the High-Pressure Lab of Arizona State University
亚利桑那州立大学高压实验室拉曼光谱系统升级
  • 批准号:
    2140416
  • 财政年份:
    2022
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Ingassing of Hydrogen in the Interiors of Sub-Neptunes and Gas Giants
亚海王星和气态巨行星内部的氢气吸收
  • 批准号:
    2108129
  • 财政年份:
    2021
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant
Possible Storage of H2O in Mantle Ca(Ti,Si)O3 Perovskite
地幔 Ca(Ti,Si)O3 钙钛矿中 H2O 的可能储存
  • 批准号:
    2019565
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Effect of Hydrogen on the Sulfur-rich Martian Core
氢对富含硫的火星核心的影响
  • 批准号:
    2005567
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Calcium in Bridgmanite in the Deep Mantle
深部地幔布里奇曼石中的钙
  • 批准号:
    1725094
  • 财政年份:
    2017
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Understanding the complexity of the 660-km seismic discontinuity
了解 660 公里地震间断面的复杂性
  • 批准号:
    1316007
  • 财政年份:
    2012
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Valence state of iron in the lower mantle
CSEDI合作研究:下地幔铁的价态
  • 批准号:
    1316022
  • 财政年份:
    2012
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant
The Perovskite to Post-Perovskite Phase Boundary in Mantle Rocks
地幔岩石中的钙钛矿到后钙钛矿相边界
  • 批准号:
    1301813
  • 财政年份:
    2012
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant

相似海外基金

Effect of biofilm formation on multiphase flow and wetting properties during cyclic injection of hydrogen in rocks
岩石循环注氢过程中生物膜形成对多相流和润湿特性的影响
  • 批准号:
    2901554
  • 财政年份:
    2024
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Studentship
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
  • 批准号:
    23K17905
  • 财政年份:
    2023
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of CPLB method of properties and reactivities related hydrogen near the metal nanoparticle surfaces
开发金属纳米粒子表面附近与氢相关的性质和反应性的CPLB方法
  • 批准号:
    22H01758
  • 财政年份:
    2022
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Acid/Base Properties of Hydrocarbon Carbon-Hydrogen (C-H) Bonds and Metal-Element Active Sites
碳氢化合物碳氢 (C-H) 键和金属元素活性位点的基本酸/碱性质
  • 批准号:
    1953547
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Standard Grant
Accurate Measurements of Thermodynamic Properties and Thermodynamic Analysis of a State-of-the-Art Equation of State for Ternary Fluid Mixtures with Hydrogen Extended from Type III Binary Systems
从 III 型二元系统扩展而来的含氢三元流体混合物的热力学性质的精确测量和最先进的状态方程的热力学分析
  • 批准号:
    20H02091
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Metallic Properties of the Isotopes of Hydrogen
氢同位素的金属性质
  • 批准号:
    1905943
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Continuing Grant
Enhancement of stem cell regenerative properties by hydrogen sulfide: a novel wound dressing to augment stem cell therapies
硫化氢增强干细胞再生特性:一种增强干细胞治疗的新型伤口敷料
  • 批准号:
    10701696
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
Enhancement of stem cell regenerative properties by hydrogen sulfide: a novel wound dressing to augment stem cell therapies
硫化氢增强干细胞再生特性:一种增强干细胞治疗的新型伤口敷料
  • 批准号:
    10263278
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
Enhancement of stem cell regenerative properties by hydrogen sulfide: a novel wound dressing to augment stem cell therapies
硫化氢增强干细胞再生特性:一种增强干细胞治疗的新型伤口敷料
  • 批准号:
    10469580
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
Optimal selection of hydrogen carrier candidate substances by the modeling of various thermodynamic properties and new design of processes
通过各种热力学性质建模和新工艺设计来优化氢载体候选物质的选择
  • 批准号:
    20K04332
  • 财政年份:
    2020
  • 资助金额:
    $ 29.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了