Possible Storage of H2O in Mantle Ca(Ti,Si)O3 Perovskite
地幔 Ca(Ti,Si)O3 钙钛矿中 H2O 的可能储存
基本信息
- 批准号:2019565
- 负责人:
- 金额:$ 27.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Water is one of the key ingredients for the habitability of the Earth. While 70% of the Earth’s surface is covered with water, far more water may exist in the rocks of the interior. This “deep water” is believed to have been contributing to the evolution of the atmosphere and hydrosphere over geologic time scales. However, it is difficult to obtain samples from depths greater than ~10 km because of technological limitations. Therefore, it is important to conduct laboratory experiments on the main minerals at the high pressure-temperature conditions of the Earth’s interior. Laboratory experiments for the past two decades have shown that some minerals in the mantle above 660-km depth can contain large amounts of water, contributing to approximately one ocean mass of water stored in this part of the mantle. However, laboratory measurements have also shown that water storage capacities of some main minerals stable at the mantle from 660 km to 2900 km depths could be very low, leading to a hypothesis that the layer is essentially dry. However, the water storage capacity of the third most abundant phase in the lower part of the mantle, Ca(Ti,Si)O3 perovskite, has not been well studied. In this research project, researchers will synthesize Ca(Ti,Si)O3 perovskite at the high pressure-temperature conditions of the lower mantle and measure its water storage capacity. The measurements will advance our knowledge on how much water can be stored in the lower mantle, which represents more than 50% of the Earth’s volume. The researchers will also measure the impact of water solubility on the physical properties of Ca(Ti,Si)O3 perovskite, providing key data for investigating possible existence of water-rich regions in the lower mantle through seismic imaging methods. A Ph.D. student and undergraduate students will be trained for a comprehensive skill-set in high-pressure apparatus and in the characterization of very small run products. Informing the public about the important role of hydrogen in the interior of Earth (and other planets) will be achieved using the annual “Earth and Space Exploration Day” open house and the campus-wide “Night of the Open Door” event. The data analysis will be written in Jupyter notebook files and then converted to education materials for mineralogy and geochemistry courses at ASU.Through this grant, PI Shim’s research group will measure the water storage capacity of Ca(Ti,Si)O3 perovskite. They will synthesize high-quality samples at the pressure–temperature conditions for the stability of Ca(Ti,Si)O3 perovskite in the large-volume press. The synthesized samples will be carefully analyzed using a range of techniques (infrared and Raman spectroscopy, thermogravimetric analysis, secondary ion mass spectrometry, X-ray diffraction, and electron microscopy) for possible H2O storage. The synthesized samples will also be studied in the diamond-anvil cell to measure the effects of H2O and Ti on the thermoelastic properties at mantle-related pressures. Intense effort has been made in Earth science over a decade to understand the role of the interior for the evolution of Earth’s atmosphere and hydrosphere. Yet, water storage in the lower mantle still remains uncertain. By studying the third most abundant mineral phase in the lower mantle, the research project will advance our knowledge on the deep H2O storage which is important for a range of issues in Earth science, including volatiles recycling, Earth formation and differentiation, and seismic structures in the deep mantle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水是地球可居住性的关键要素之一。 虽然地球表面的70%被水覆盖,但更多的水可能存在于内部的岩石中。 据信,这种“深水”在地质年代尺度上对大气和水圈的演变做出了贡献。 然而,由于技术限制,很难从超过10公里的深度获取样本。 因此,在地球内部的高温高压条件下对主要矿物进行实验室实验是非常重要的。 过去20年的实验室实验表明,660公里深度以上的地幔中的一些矿物可能含有大量的水,大约有一个海洋质量的水储存在地幔的这一部分。 然而,实验室测量也表明,在地幔660公里至2900公里深处稳定的一些主要矿物的储水能力可能非常低,导致该层基本上是干燥的假设。然而,水的存储能力的第三个最丰富的相在地幔的下部,钙钛矿Ca(Ti,Si)O3,还没有得到很好的研究。在该研究项目中,研究人员将在下地幔的高压-温度条件下合成Ca(Ti,Si)O3钙钛矿,并测量其储水能力。 这些测量将增进我们对下地幔中能储存多少水的认识,下地幔占地球体积的50%以上。 研究人员还将测量水溶性对Ca(Ti,Si)O3钙钛矿物理性质的影响,为通过地震成像方法研究下地幔中可能存在的富水区域提供关键数据。博士学位学生和本科生将接受培训,掌握高压设备的综合技能,并对非常小的产品进行表征。向公众宣传氢在地球(和其他行星)内部的重要作用将通过一年一度的“地球和太空探索日”开放日和校园范围内的“门户开放之夜”活动来实现。这些数据分析将被记录在笔记本中,然后被转换成亚利桑那州立大学矿物学和地球化学课程的教学材料。通过这笔资助,PI Shim的研究小组将测量Ca(Ti,Si)O3钙钛矿的储水能力。他们将在大体积压力机中为Ca(Ti,Si)O3钙钛矿的稳定性在压力-温度条件下合成高质量的样品。 将使用一系列技术(红外和拉曼光谱、热重分析、二次离子质谱、X射线衍射和电子显微镜)仔细分析合成样品,以确定是否存在H2O储存。合成的样品也将在金刚石压砧室中进行研究,以测量H2O和Ti对地幔相关压力下热弹性性质的影响。十多年来,地球科学一直在努力了解地球内部对地球大气层和水圈演变的作用。 然而,下地幔中的水储存仍然不确定。 通过研究下地幔中第三丰富的矿物相,该研究项目将提高我们对深层H2O储存的认识,这对地球科学中的一系列问题至关重要,包括挥发物循环,地球形成和分化,该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Water in the crystal structure of CaSiO3 perovskite
CaSiO3钙钛矿晶体结构中的水
- DOI:10.2138/am-2022-8009
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Shim, Sang-Heon;Chizmeshya, Andrew;Leinenweber, Kurt
- 通讯作者:Leinenweber, Kurt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang-Heon Shim其他文献
Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle
地幔底部具有低地震波速的大陆规模异常区
- DOI:
10.1038/ngeo2733 - 发表时间:
2016-06-20 - 期刊:
- 影响因子:16.100
- 作者:
Edward J. Garnero;Allen K. McNamara;Sang-Heon Shim - 通讯作者:
Sang-Heon Shim
Post-perovskite at ten
后钙钛矿在十
- DOI:
10.1038/ngeo2237 - 发表时间:
2014-08-28 - 期刊:
- 影响因子:16.100
- 作者:
Sang-Heon Shim;Thorne Lay - 通讯作者:
Thorne Lay
Raman spectroscopy and x-ray diffraction of phase transitions in Cr 2 O 3 to 61 GPa
- DOI:
10.1103/physrevb.69.144107 - 发表时间:
2004-04 - 期刊:
- 影响因子:3.7
- 作者:
Sang-Heon Shim - 通讯作者:
Sang-Heon Shim
Sang-Heon Shim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sang-Heon Shim', 18)}}的其他基金
EA: Upgrade of the Laser Heating System in the High-Pressure Diamond-Anvil Cell Laboratory at Arizona State University
EA:亚利桑那州立大学高压金刚石砧室实验室激光加热系统升级
- 批准号:
2335071 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Collaborative Research: From Silicate Melts Properties to the Dynamics and Evolution of an Early Basal Magma Ocean
合作研究:从硅酸盐熔体特性到早期基底岩浆洋的动力学和演化
- 批准号:
2153968 - 财政年份:2022
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Upgrade of the Raman Spectroscopy System at the High-Pressure Lab of Arizona State University
亚利桑那州立大学高压实验室拉曼光谱系统升级
- 批准号:
2140416 - 财政年份:2022
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Ingassing of Hydrogen in the Interiors of Sub-Neptunes and Gas Giants
亚海王星和气态巨行星内部的氢气吸收
- 批准号:
2108129 - 财政年份:2021
- 资助金额:
$ 27.93万 - 项目类别:
Continuing Grant
Effect of Hydrogen on the Sulfur-rich Martian Core
氢对富含硫的火星核心的影响
- 批准号:
2005567 - 财政年份:2020
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Effect of Hydrogen on the Properties of Fe alloys in the Earth's Core
氢对地核铁合金性能的影响
- 批准号:
1921298 - 财政年份:2019
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Calcium in Bridgmanite in the Deep Mantle
深部地幔布里奇曼石中的钙
- 批准号:
1725094 - 财政年份:2017
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Understanding the complexity of the 660-km seismic discontinuity
了解 660 公里地震间断面的复杂性
- 批准号:
1316007 - 财政年份:2012
- 资助金额:
$ 27.93万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: Valence state of iron in the lower mantle
CSEDI合作研究:下地幔铁的价态
- 批准号:
1316022 - 财政年份:2012
- 资助金额:
$ 27.93万 - 项目类别:
Continuing Grant
The Perovskite to Post-Perovskite Phase Boundary in Mantle Rocks
地幔岩石中的钙钛矿到后钙钛矿相边界
- 批准号:
1301813 - 财政年份:2012
- 资助金额:
$ 27.93万 - 项目类别:
Continuing Grant
相似国自然基金
面向in-storage智能计算的固态硬盘缓存管理优化
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 27.93万 - 项目类别:
Research Grant
Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
- 批准号:
10085992 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Collaborative R&D
Evolving privacy and utility in data storage and publishing
数据存储和发布中不断发展的隐私和实用性
- 批准号:
DE240100165 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Discovery Early Career Researcher Award
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
- 批准号:
DE240100863 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Discovery Early Career Researcher Award
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
- 批准号:
DE240100755 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Discovery Early Career Researcher Award
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
- 批准号:
EP/Y007778/1 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Research Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
- 批准号:
2331724 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Cooperative Agreement
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
- 批准号:
2346636 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant