Scale-Dependent Observability of Emergent Dynamics: Application to Traffic Flow with Connected Vehicles

突发动力学的尺度相关可观测性:在联网车辆交通流中的应用

基本信息

  • 批准号:
    1921367
  • 负责人:
  • 金额:
    $ 17.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Global emergent patterns are observed in several large-scale complex systems, such as transportation networks, power grids, and financial markets. Gaining understanding of these dynamically evolving behavioral patterns is very important to solve problems associated with such systems. For example, in transportation networks, these emergent patterns usually dictate congestion dynamics and are poised to undergo a transformative change with the introduction of connected vehicles that can communicate with each other. Consequently, our ability to observe such patterns plays a critical role in effectively managing the transition to a smarter transportation network as well as in improving system performance and reducing congestion costs. This research seeks to answer questions about the appropriate scale at which these patterns may be best observed. Additionally, this work also seeks to assess the effect of varying penetration rates of connected vehicles on the ability to observe emergent patterns in traffic. This work has a great potential to significantly improve our ability to monitor, predict and control the occurrence of emergent congestion events. In the case of traffic flow applications, this study could help reduce worldwide congestion costs that are estimated to be in several hundreds of billions of US dollars annually. The techniques developed during this study will enhance our fundamental knowledge about how to observe the emergent behavior and use this knowledge to analyze and solve the problems associated with several other complex systems. The project also has highly innovative educational plan of creating visually appealing and lucid graphics material to engage undergraduate and graduate students, as well as the general public.The primary objective of this research project is to create a rigorous methodology to determine the spatial scale and model order required to observe and predict emergent phenomena in complex systems. In a narrower context of traffic flow, the project seeks to establish the modeling requirements for observing emergent congestion events on a multi-lane highway, and predicting such behavior with better accuracy than current prediction models. The approach will modify existing Krylov subspace-based model order reduction techniques by explicitly incorporating spatial scales into the process. More importantly, the novel contribution of this work will be the control-theoretic formulation of the renormalization group theory borrowed from the field of statistical mechanics to gain an understanding of how the observability of emergent dynamics depends on spatial scale. The research will include the study of spatial dependence of observability in complex systems in a control-theoretic setting. This work will also contribute to the study of how penetration rate (i.e., the distribution of a sensor network in a complex system) impacts the observability of emergent behavior in complex traffic flow dynamics.
全球涌现模式在几个大规模的复杂系统中被观察到,如交通网络,电网和金融市场。了解这些动态演变的行为模式对于解决与此类系统相关的问题非常重要。例如,在交通网络中,这些新出现的模式通常决定了拥堵动态,并且随着可以相互通信的联网车辆的引入,这些模式将发生变革。因此,我们观察这种模式的能力在有效管理向更智能交通网络的过渡以及提高系统性能和降低拥堵成本方面发挥着关键作用。这项研究旨在回答有关最佳观察这些模式的适当尺度的问题。此外,这项工作还旨在评估联网车辆的不同渗透率对观察交通中紧急模式的能力的影响。这项工作有很大的潜力,显着提高我们的能力,监测,预测和控制紧急拥堵事件的发生。在交通流应用的情况下,这项研究可以帮助减少全球拥堵成本,估计每年数千亿美元。在这项研究中开发的技术将增强我们关于如何观察涌现行为的基础知识,并利用这些知识来分析和解决与其他几个复杂系统相关的问题。该项目还具有高度创新的教育计划,创造视觉吸引力和清晰的图形材料,吸引本科生和研究生,以及广大公众。该研究项目的主要目标是创建一个严格的方法来确定所需的空间尺度和模型顺序来观察和预测复杂系统中的涌现现象。在一个较窄的交通流背景下,该项目旨在建立模型的要求,观察紧急拥堵事件的多车道高速公路,并预测这种行为比目前的预测模型更准确。该方法将修改现有的Krylov子空间为基础的模型降阶技术,明确将空间尺度的过程。更重要的是,这项工作的新贡献将是从统计力学领域借来的重整化群理论的控制理论公式,以了解涌现动力学的可观测性如何取决于空间尺度。该研究将包括在控制理论设置的复杂系统中的可观测性的空间依赖性的研究。这项工作也将有助于研究如何渗透率(即,传感器网络在复杂系统中的分布)影响复杂交通流动态中涌现行为的可观测性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observability Variation in Emergent Dynamics: A Study using Krylov Subspace-based Model Order Reduction
  • DOI:
    10.23919/acc45564.2020.9147750
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaohui Yang;Kshitij Jerath
  • 通讯作者:
    Zhaohui Yang;Kshitij Jerath
Examining the Observability of Emergent Behavior as a Function of Reduced Model Order
检查突现行为的可观察性作为简化模型阶数的函数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kshitij Jerath其他文献

Congestion-Aware Cooperative Adaptive Cruise Control for Mitigation of Self-Organized Traffic Jams
用于缓解自组织交通拥堵的拥堵感知协作自适应巡航控制
Influential Subpaces of Connected Vehicles in Highway Traffic
联网车辆对公路交通的影响子空间
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kshitij Jerath;V. Gayah;S. Brennan
  • 通讯作者:
    S. Brennan
Identification of locally influential agents in self-organizing multi-agent systems
自组织多智能体系统中局部影响力智能体的识别
GPS-Free Terrain-Based Vehicle Tracking Performance as a Function of Inertial Sensor Characteristics
作为惯性传感器特性函数的无 GPS 地形车辆跟踪性能
  • DOI:
    10.1115/dscc2011-5938
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Kshitij Jerath;S. Brennan
  • 通讯作者:
    S. Brennan
Adaptive Granulation: Data Reduction at the Database Level
自适应粒度:数据库级别的数据缩减
  • DOI:
    10.5220/0012190700003598
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    H. Haeri;Niket Kathiriya;Cindy Chen;Kshitij Jerath
  • 通讯作者:
    Kshitij Jerath

Kshitij Jerath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kshitij Jerath', 18)}}的其他基金

CPS: Medium: Collaborative Research: Automated Discovery of Data Validity for Safety-Critical Feedback Control in a Population of Connected Vehicles
CPS:中:协作研究:自动发现联网车辆中安全关键反馈控制的数据有效性
  • 批准号:
    1932138
  • 财政年份:
    2019
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Scale-Dependent Observability of Emergent Dynamics: Application to Traffic Flow with Connected Vehicles
突发动力学的尺度相关可观测性:在联网车辆交通流中的应用
  • 批准号:
    1663652
  • 财政年份:
    2017
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant

相似国自然基金

当归芍药散基于双向调控Ras/cAMP-dependent PKA自噬通路的“酸甘化阴、辛甘化阳”的药性基础
  • 批准号:
    81973497
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
蒺藜苜蓿细胞周期蛋白依赖性激酶(cyclin-dependent kinase)对根瘤发育的功能研究
  • 批准号:
    31100871
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Posphoinositide-dependent kinase-1在肿瘤细胞趋化运动和转移中的作用机制
  • 批准号:
    30772529
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Continuing Grant
CAREER: Chemoenzymatic Synthesis of Complex Polycyclic Alkaloids Enabled by A-Ketoglutarate Dependent Iron Enzymes
职业:通过 A-酮戊二酸依赖性铁酶实现复杂多环生物碱的化学酶法合成
  • 批准号:
    2338495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Continuing Grant
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
  • 批准号:
    BB/Y001206/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Research Grant
An explainability oriented approach to manage dependent supply chain risks
一种以可解释性为导向的方法来管理相关供应链风险
  • 批准号:
    LP230100379
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Linkage Projects
Molecular mechanism of the PRC-dependent RNA degradation by the rixosome
核糖体PRC依赖性RNA降解的分子机制
  • 批准号:
    DP240101212
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Discovery Projects
Elucidating type 1 conventional dendritic cell-dependent anti-tumour immune responses in brain metastases
阐明脑转移瘤中 1 型传统树突状细胞依赖性抗肿瘤免疫反应
  • 批准号:
    MR/Y013328/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Research Grant
Planning: FIRE-PLAN: Merging diverse knowledge systems to advance restoration of fire-dependent forests in the Great Lakes region
规划:FIRE-PLAN:融合不同的知识系统,推进五大湖地区依赖火灾的森林的恢复
  • 批准号:
    2335838
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    $ 17.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了