CPS: Medium: Collaborative Research: Automated Discovery of Data Validity for Safety-Critical Feedback Control in a Population of Connected Vehicles
CPS:中:协作研究:自动发现联网车辆中安全关键反馈控制的数据有效性
基本信息
- 批准号:1932138
- 负责人:
- 金额:$ 50.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our world is currently experiencing an incredible increase in the amount of real-world data available, yet that data remains useful or valid only for a finite period of time. For example, detour information provided to drivers during traffic construction loses its utility upon completion of the construction assignment. This project develops methods to determine the validity of data accumulated in databases, to answer the question: when do data expire? Knowledge of data validity is even more important in the context of safety-critical applications in the physical world: how much of the past data should be trusted to make safety-critical decisions in the present? Can data from nearby locations be trusted to accurately reflect local context and conditions? Answering these fundamental questions will impact a wide-range of applications, including traffic management, national defense, weather forecasting, etc., since data is a universal feature of modern society. The methods developed in this project are implemented and tested for control of connected autonomous vehicles in safety-critical scenarios such as driving on potentially icy roads. This work has significant potential to not only ensure safety in the imminent deployment of connected autonomous vehicles, but also improve certainty and confidence in a wide range of data- and information- intensive applications. This collaborative research will support development of graduate and undergraduate researchers at Penn State University, Bucknell University, and the University of Massachusetts Lowell. The project also includes Science, Technology, Engineering, and Math (STEM)-focused outreach activities for middle-school students to broaden participation within the field of cyber-physical systems. The research objective of the project is to create methods to determine how the validity of data decays over time, and over increasing distances away from where the data was collected. The research is conducted in the context of safety-critical systems, namely fleets of connected autonomous vehicles (CAVs) driving on potentially icy roads, where safety-critical road friction information is shared via a wireless data link to a central spatiotemporal database that mediates data averaging. This data is used to estimate the roadway friction coefficient (i.e. the presence of ice) and is transmitted to other connected vehicles in the vicinity. The time duration of data trust and validity of the friction estimates within the database are evaluated using Allan variance analysis, enabling the database to internally model and monitor data timeliness and quality. The investigators also study performance metrics (e.g., stability) of the coupled fast and slow feedback loops, where the fast loop acts at the vehicle level to ensure safe CAV operations in icy conditions using database-mediated preview of friction measurements. The slow loop is the spatial, multi-vehicle data averaging in the database using current measurements provided by a fleet of CAVs. These functionalities are then examined in the context of CAV fleets operating on road networks with large spatiotemporal extents. While implemented in a CAV context, these methods can be used in any application that synthesizes actionable information from spatial, temporal, or spatiotemporal data streams.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们的世界目前正在经历一个令人难以置信的增长,在现实世界的数据量,但这些数据仍然是有用的或有效的,只有在有限的时间内。例如,在交通施工期间提供给驾驶员的绕行信息在施工任务完成时失去其效用。该项目开发的方法来确定数据库中积累的数据的有效性,回答这个问题:什么时候数据到期?数据有效性的知识在物理世界中的安全关键应用程序的背景下更加重要:在当前的安全关键决策中,应该信任多少过去的数据?来自附近位置的数据是否可信,以准确反映当地的背景和条件?解决这些基本问题将影响到广泛的应用,包括交通管理、国防、天气预报等,因为数据是现代社会普遍特征。该项目中开发的方法已经过实施和测试,用于在安全关键场景中控制联网的自动驾驶汽车,例如在可能结冰的道路上驾驶。这项工作不仅有很大的潜力确保即将部署的互联自动驾驶汽车的安全性,而且还可以提高广泛的数据和信息密集型应用的确定性和信心。这项合作研究将支持宾夕法尼亚州立大学、巴克内尔大学和马萨诸塞州洛厄尔大学的研究生和本科生研究人员的发展。该项目还包括面向中学生的以科学、技术、工程和数学(STEM)为重点的外展活动,以扩大网络物理系统领域的参与。该项目的研究目标是创建方法来确定数据的有效性如何随着时间的推移而衰减,以及随着距离数据收集地点的距离增加而衰减。该研究是在安全关键系统的背景下进行的,即在可能结冰的道路上行驶的联网自动驾驶车辆(CAV)车队,其中安全关键的道路摩擦信息通过无线数据链路共享到中央时空数据库,该数据库调解数据平均。这些数据用于估计道路摩擦系数(即冰的存在),并传输到附近的其他联网车辆。使用Allan方差分析评估数据库内的数据信任的持续时间和摩擦估计的有效性,使数据库能够内部建模和监测数据的及时性和质量。研究人员还研究性能指标(例如,稳定性),其中快速回路在飞行器水平上起作用,以确保CAV在结冰条件下使用数据库介导的摩擦测量预览安全运行。慢循环是使用CAV车队提供的当前测量值在数据库中对空间多飞行器数据进行平均。这些功能,然后检查CAV车队在道路网络上运行的大时空范围内的背景下。虽然在CAV环境中实施,但这些方法可用于任何从空间、时间或时空数据流合成可操作信息的应用程序。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Micro-simulation Framework for Studying CAVs Behavior and Control Utilizing a Traffic Simulator, Chassis Simulation, and a Shared Roadway Friction Database
利用交通模拟器、底盘模拟和共享道路摩擦数据库研究 CAV 行为和控制的微观模拟框架
- DOI:10.23919/acc50511.2021.9483221
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gao, Liming;Maddipatla, Srivenkata Satya;Beal, Craig;Jerath, Kshitij;Chen, Cindy;Sinanaj, Lorina;Haeri, Hossein;Brennan, Sean
- 通讯作者:Brennan, Sean
Allan Variance-based Granulation Technique for Large Temporal Databases
- DOI:10.5220/0010651500003064
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lorina Sinanaj;H. Haeri;Liming Gao;Srivenkata Satya Prasad Maddipatla;Cindy Chen;Kshitij Jerath;C. Beal;Sean Brennan
- 通讯作者:Lorina Sinanaj;H. Haeri;Liming Gao;Srivenkata Satya Prasad Maddipatla;Cindy Chen;Kshitij Jerath;C. Beal;Sean Brennan
Optimal Moving Average Estimation of Noisy Random Walks using Allan Variance-informed Window Length
使用艾伦方差通知窗口长度的噪声随机游走的最优移动平均估计
- DOI:10.23919/acc53348.2022.9867447
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Haeri, Hossein;Soleimani, Behrad;Jerath, Kshitij
- 通讯作者:Jerath, Kshitij
Near-Optimal Moving Average Estimation at Characteristic Timescales: An Allan Variance Approach
特征时间尺度上的近乎最优移动平均估计:艾伦方差方法
- DOI:10.1109/lcsys.2020.3040111
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Haeri, Hossein;Beal, Craig E.;Jerath, Kshitij
- 通讯作者:Jerath, Kshitij
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kshitij Jerath其他文献
Congestion-Aware Cooperative Adaptive Cruise Control for Mitigation of Self-Organized Traffic Jams
用于缓解自组织交通拥堵的拥堵感知协作自适应巡航控制
- DOI:
10.1109/tits.2021.3059237 - 发表时间:
2022 - 期刊:
- 影响因子:8.5
- 作者:
Taehooie Kim;Kshitij Jerath - 通讯作者:
Kshitij Jerath
Influential Subpaces of Connected Vehicles in Highway Traffic
联网车辆对公路交通的影响子空间
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kshitij Jerath;V. Gayah;S. Brennan - 通讯作者:
S. Brennan
Identification of locally influential agents in self-organizing multi-agent systems
自组织多智能体系统中局部影响力智能体的识别
- DOI:
10.1109/acc.2015.7170758 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kshitij Jerath;S. Brennan - 通讯作者:
S. Brennan
GPS-Free Terrain-Based Vehicle Tracking Performance as a Function of Inertial Sensor Characteristics
作为惯性传感器特性函数的无 GPS 地形车辆跟踪性能
- DOI:
10.1115/dscc2011-5938 - 发表时间:
2011 - 期刊:
- 影响因子:6.5
- 作者:
Kshitij Jerath;S. Brennan - 通讯作者:
S. Brennan
Adaptive Granulation: Data Reduction at the Database Level
自适应粒度:数据库级别的数据缩减
- DOI:
10.5220/0012190700003598 - 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
H. Haeri;Niket Kathiriya;Cindy Chen;Kshitij Jerath - 通讯作者:
Kshitij Jerath
Kshitij Jerath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kshitij Jerath', 18)}}的其他基金
Scale-Dependent Observability of Emergent Dynamics: Application to Traffic Flow with Connected Vehicles
突发动力学的尺度相关可观测性:在联网车辆交通流中的应用
- 批准号:
1921367 - 财政年份:2018
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Scale-Dependent Observability of Emergent Dynamics: Application to Traffic Flow with Connected Vehicles
突发动力学的尺度相关可观测性:在联网车辆交通流中的应用
- 批准号:
1663652 - 财政年份:2017
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 50.12万 - 项目类别:
Standard Grant