Scientific Computing Meets Machine Learning and Life Sciences
科学计算遇见机器学习和生命科学
基本信息
- 批准号:1921366
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The workshop "Scientific Computing meets Machine Learning and Life Sciences" will be held on the campus of Texas Tech University in Lubbock, TX, from October 7 through October 9, 2019. This workshop will bring together leading experts and early career researchers from mathematics, statistics, computer science, machine learning, data sciences, and life sciences to report on cutting-edge and state-of-the-art computational algorithms in scientific computing and to identify computational and statistical challenges and open problems in machine learning and the life sciences. In addition, the workshop will provide a forum for an international and diverse group of researchers to foster communication, to facilitate new collaborative interactions, and to initiate joint research projects that will address the open and emerging issues and the computational and statistical challenges posed in machine learning and the life sciences. The three-day workshop will consist of presentations, posters, and group discussions that will stimulate an intensive exchange of ideas and foster fruitful interactions. This award supports the attendance of both researchers and graduate students, with priority given to graduate students, postdoctoral scholars, early career investigators, members of under-represented groups, and researchers who do not have other federal support. Scientific computing is an increasingly important tool in many areas of science and engineering, such as biomedical imaging, genomics, proteomics, phylogeny, computer vision, and precision medicine, allowing biological data and systems to be explored that are not amenable to theoretical or experimental investigations. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns, and make decisions with minimal human intervention. The advent of the big data era pushed machine learning to the forefront and has spurred broad interests in machine learning in recent years. The field of life sciences has advanced through a synergistic interplay between deep understanding of biology and mathematical techniques, especially from computational mathematics, probability, and statistics. Still, biologists are overwhelmed by the amount of data being generated and the new methods required for data-management. Quantitative theories are needed to help interpret and to contextualize observations. A variety of new challenges in scientific computing for machine learning have emerged in recent years that are related to the life sciences, such as developing predictive models for disorder detection, drug repurposing, toxicity prediction, electronic health record analysis, language translation, etc. These issues and many other open problems will be discussed among the diverse group of scientists participating in the workshop. More information is available at http://www.math.ttu.edu/scmlls2019/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“科学计算与机器学习和生命科学”研讨会将于2019年10月7日至10月9日在德克萨斯州拉伯克的德克萨斯理工大学校园举行。本次研讨会将汇集来自数学、统计学、计算机科学、机器学习、数据科学和生命科学领域的顶尖专家和早期职业研究人员,报告科学计算领域的前沿和最先进的计算算法,并确定机器学习和生命科学领域的计算和统计挑战和开放问题。此外,研讨会将为国际和多样化的研究人员群体提供一个论坛,以促进交流,促进新的协作互动,并启动联合研究项目,以解决机器学习和生命科学中开放和新兴的问题以及计算和统计挑战。为期三天的研讨会将包括演讲、海报和小组讨论,这将刺激思想的密集交流,促进富有成效的互动。该奖项支持研究人员和研究生的出席,优先考虑研究生,博士后学者,早期职业研究者,代表性不足的群体成员以及没有其他联邦支持的研究人员。科学计算是许多科学和工程领域日益重要的工具,如生物医学成像、基因组学、蛋白质组学、系统发育、计算机视觉和精准医学,它允许探索无法适应理论或实验研究的生物数据和系统。机器学习是一种数据分析方法,可以自动构建分析模型。它是人工智能的一个分支,基于这样一种理念:系统可以从数据中学习,识别模式,并在最少的人为干预下做出决策。近年来,大数据时代的到来将机器学习推向了最前沿,并激发了人们对机器学习的广泛兴趣。生命科学领域的发展是通过对生物学的深刻理解和数学技术,特别是计算数学、概率论和统计学之间的协同作用而取得的。尽管如此,生物学家还是被生成的大量数据和数据管理所需的新方法所淹没。需要定量理论来帮助解释和背景化观察结果。近年来,机器学习科学计算领域出现了各种与生命科学相关的新挑战,如开发疾病检测、药物再利用、毒性预测、电子健康记录分析、语言翻译等预测模型。这些问题和许多其他悬而未决的问题将在参加研讨会的不同科学家群体中进行讨论。更多信息可在http://www.math.ttu.edu/scmlls2019/.This上获得,该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Allen其他文献
The New Shape of Old Island Cultures: A Half Century of Social Change in Micronesia (review)
古老岛屿文化的新形态:密克罗尼西亚半个世纪的社会变迁(评论)
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Linda Allen - 通讯作者:
Linda Allen
Preachers of grace: The arts and crafts movement in England
- DOI:
10.1007/bf02089766 - 发表时间:
1982-09-01 - 期刊:
- 影响因子:0.200
- 作者:
Linda Allen - 通讯作者:
Linda Allen
Further Evidence on the Information Content of Bank Examination Ratings: A Study of BHC-to-FHC Conversion Applications
- DOI:
10.1023/a:1012468209157 - 发表时间:
2001-01-01 - 期刊:
- 影响因子:2.000
- 作者:
Linda Allen;Julapa Jagtiani;James T. Moser - 通讯作者:
James T. Moser
Risk and Market Segmentation in Financial Intermediaries' Returns
- DOI:
10.1023/a:1007974719557 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:2.000
- 作者:
Linda Allen;Julapa Jagtiani - 通讯作者:
Julapa Jagtiani
Do CoCos serve the goals of macroprudential supervisors or bank managers?
公司债是否服务于宏观审慎监管机构或银行管理者的目标?
- DOI:
10.1016/j.intfin.2023.101761 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:6.100
- 作者:
Linda Allen;Andrea Golfari - 通讯作者:
Andrea Golfari
Linda Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Allen', 18)}}的其他基金
Collaborative Research: Modeling Immune Dynamics of RNA Viruses In Reservoir and Nonreservoir Species
合作研究:储存库和非储存库物种中 RNA 病毒的免疫动力学建模
- 批准号:
1517719 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Fourth International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
第四届生物系统群体数学建模与分析国际会议
- 批准号:
1338501 - 财政年份:2013
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Stochastic Metapopulation Models Applied to Amphibians on the Southern High Plains
随机种群模型应用于南部高原两栖动物
- 批准号:
0718302 - 财政年份:2007
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Dynamics and Evolution of Emerging Diseases with Applications to Amphibians
新发疾病的动态和演变及其在两栖动物中的应用
- 批准号:
0201105 - 财政年份:2002
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
Development and Analysis of Models for the Spread and Control of Weeds and Infectious Diseases
杂草和传染病传播和控制模型的开发和分析
- 批准号:
9626417 - 财政年份:1996
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Development and Analysis of Three- Species Epidemic Models
数学科学:三物种流行病模型的开发与分析
- 批准号:
9208909 - 财政年份:1992
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
相似海外基金
Best Subset Selection: Statistics Meets Quantum Computing
最佳子集选择:统计学遇上量子计算
- 批准号:
2210468 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities--Jupyter Meets the Earth: Enabling Discovery in Geoscience through Interactive Computing at Scale
协作研究:EarthCube 数据能力——Jupyter 遇见地球:通过大规模交互式计算实现地球科学发现
- 批准号:
1928374 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Collaborative Research: EarthCube Data Capabilities--Jupyter Meets the Earth: Enabling Discovery in Geoscience through Interactive Computing at Scale
协作研究:EarthCube 数据能力——Jupyter 遇见地球:通过大规模交互式计算实现地球科学发现
- 批准号:
1928406 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Trajectory data processing: Spatial computing meets information retrieval
轨迹数据处理:空间计算与信息检索的结合
- 批准号:
DP170102231 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Projects
When Smart Grid Meets Cloud Computing: Theory, Algorithm Development, and Evaluation
当智能电网遇上云计算:理论、算法开发和评估
- 批准号:
RGPIN-2016-05480 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
High-precision QCD Meets High-performance Computing
高精度QCD遇见高性能计算
- 批准号:
1520916 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
WN: Collaboration of Networked Nodes through Belief Propagation: Where Computing Meets Communications
WN:通过信念传播进行网络节点的协作:计算与通信的结合
- 批准号:
0721815 - 财政年份:2007
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
SGER: Enabling Truly Pervasive Computing: Communications Meets Software Engineering
SGER:实现真正的普适计算:通信与软件工程的结合
- 批准号:
0620245 - 财政年份:2006
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Programming in the Large Vs. Programming in the Lounge: Software Engineering Meets Portable Computing
大型 Vs 中的编程
- 批准号:
9251836 - 财政年份:1992
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Algorithms for Swarm Robotics: Distributed Computing meets Dynamical Systems
群体机器人算法:分布式计算与动态系统的结合
- 批准号:
453112019 - 财政年份:
- 资助金额:
$ 2.55万 - 项目类别:
Research Grants