Development and Analysis of Models for the Spread and Control of Weeds and Infectious Diseases

杂草和传染病传播和控制模型的开发和分析

基本信息

  • 批准号:
    9626417
  • 负责人:
  • 金额:
    $ 8.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-15 至 2000-08-31
  • 项目状态:
    已结题

项目摘要

Allen 9626417 The goals of this research involve two different but related biological areas; one area is weed control and the other is control of infectious diseases. By their very nature, weeds and infectious disease agents are unwanted invaders in a host system; their introduction frequently has adverse effects. Practical methods for control of weeds and infectious diseases are under continual research and development. However, there is a need for theoretical justification and predictability of these control procedures. This project develops and analyzes mathematical models that provide quantitive and qualitative means for evaluation of these control procedures. Integrodifference equations provide a realistic starting point for modeling the biological dynamics of these two processes; the time variable is discrete but the spatial and state variables are continuous. Discrete-time models describe plant populations whose generations are nonoverlapping and epidemics where the observation of cases or the seasonal movement and population densities of animals relate to the discrete time interval. Mathematical models for weeds and infectious diseases are analyzed to determine the effects of spatial dispersal, age or stage structure, multi-population interactions, and general growth assumptions on model behavior. Two important questions are addressed: (i) How fast does the weed or disease spread? and, (ii) What are the short- and long-term effects of a control procedure? Determining effective control procedures for weeds and infectious diseases has become a significant global environmental problem. Around the world, native plant communities are being displaced by nonnative plants and enzootic wildlife diseases are becoming a threat to humans. In particular, agricultural land and rangeland, where the native plant community structure has been altered, are especially vulnerable to invasions by introduced plant species. Humans living in close proximity to an animal reservoir of a disease are at an increased risk of contracting the disease. It is the goal of this research to apply the mathematical models and theoretical techniques that are developed in this project to two important and timely biological problems: (1) control of weeds in agricultural fields or rangeland and (2) control of rabies in wildlife populations. Formulation, analysis, and numerical simulation of mathematical models provide a greater understanding of effective methods for the control of the spread of weeds in fields or rangeland and of rabies in wildlife. Various control strategies are compared to determine the most effective short- and long-term strategies that prevent or reduce the spread while causing minimal damage or change to the environment and minimal risk to humans.
艾伦9626417 这项研究的目标涉及两个不同但相关的生物领域;一个领域是杂草控制,另一个是传染病控制。 就其本质而言,杂草和传染病病原体是宿主系统中不受欢迎的入侵者;它们的引入通常会产生不利影响。 控制杂草和传染病的实用方法正在不断研究和开发中。 然而,这些控制程序需要理论上的合理性和可预测性。 该项目开发和分析数学模型,为这些控制程序的评估提供定量和定性的手段。 积分差分方程为这两个过程的生物动力学建模提供了一个现实的起点;时间变量是离散的,但空间和状态变量是连续的。 离散时间模型描述的是世代不重叠的植物种群和流行病,其中观察到的病例或动物的季节性运动和种群密度与离散时间间隔有关。 分析杂草和传染病的数学模型,以确定空间扩散,年龄或阶段结构,多种群相互作用和一般生长假设对模型行为的影响。 两个重要的问题得到解决:(一)如何快速杂草或疾病蔓延?以及,(ii)控制程序的短期和长期效果是什么? 确定杂草和传染病的有效控制程序已成为一个重要的全球性环境问题。 在世界各地,本土植物群落正在被外来植物取代,地方性野生动物疾病正在成为对人类的威胁。 特别是农业用地和牧场,当地植物群落结构已被改变,特别容易受到外来植物物种的入侵。 生活在疾病动物宿主附近的人类感染疾病的风险增加。 本研究的目标是将本项目中开发的数学模型和理论技术应用于两个重要而及时的生物学问题:(1)农田或牧场杂草的控制和(2)野生动物种群中狂犬病的控制。 数学模型的制定,分析和数值模拟提供了一个更好的理解,有效的方法来控制杂草的蔓延领域或牧场和野生动物的狂犬病。 对各种控制策略进行比较,以确定最有效的短期和长期策略,防止或减少传播,同时对环境造成最小的损害或变化,对人类造成最小的风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linda Allen其他文献

The New Shape of Old Island Cultures: A Half Century of Social Change in Micronesia (review)
古老岛屿文化的新形态:密克罗尼西亚半个世纪的社会变迁(评论)
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linda Allen
  • 通讯作者:
    Linda Allen
Risk and Market Segmentation in Financial Intermediaries' Returns
Further Evidence on the Information Content of Bank Examination Ratings: A Study of BHC-to-FHC Conversion Applications
  • DOI:
    10.1023/a:1012468209157
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Linda Allen;Julapa Jagtiani;James T. Moser
  • 通讯作者:
    James T. Moser
Preachers of grace: The arts and crafts movement in England
  • DOI:
    10.1007/bf02089766
  • 发表时间:
    1982-09-01
  • 期刊:
  • 影响因子:
    0.200
  • 作者:
    Linda Allen
  • 通讯作者:
    Linda Allen
Do CoCos serve the goals of macroprudential supervisors or bank managers?
公司债是否服务于宏观审慎监管机构或银行管理者的目标?

Linda Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linda Allen', 18)}}的其他基金

Scientific Computing Meets Machine Learning and Life Sciences
科学计算遇见机器学习和生命科学
  • 批准号:
    1921366
  • 财政年份:
    2019
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Immune Dynamics of RNA Viruses In Reservoir and Nonreservoir Species
合作研究:储存库和非储存库物种中 RNA 病毒的免疫动力学建模
  • 批准号:
    1517719
  • 财政年份:
    2015
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Fourth International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
第四届生物系统群体数学建模与分析国际会议
  • 批准号:
    1338501
  • 财政年份:
    2013
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Stochastic Metapopulation Models Applied to Amphibians on the Southern High Plains
随机种群模型应用于南部高原两栖动物
  • 批准号:
    0718302
  • 财政年份:
    2007
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Dynamics and Evolution of Emerging Diseases with Applications to Amphibians
新发疾病的动态和演变及其在两栖动物中的应用
  • 批准号:
    0201105
  • 财政年份:
    2002
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Development and Analysis of Three- Species Epidemic Models
数学科学:三物种流行病模型的开发与分析
  • 批准号:
    9208909
  • 财政年份:
    1992
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
  • 批准号:
    23K05477
  • 财政年份:
    2023
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tensorial Reduced Order Models: Development, Analysis, and Applications
张量降阶模型:开发、分析和应用
  • 批准号:
    2309197
  • 财政年份:
    2023
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Standard Grant
Mechanistic analysis of Toxoplasma gondii sexual development in tissue culture and mouse models
组织培养和小鼠模型中弓形虫性发育的机制分析
  • 批准号:
    10533513
  • 财政年份:
    2022
  • 资助金额:
    $ 8.85万
  • 项目类别:
Development of novel animal models for late onset Alzheimer's disease and body fluid omics analysis
开发用于迟发性阿尔茨海默病和体液组学分析的新型动物模型
  • 批准号:
    22K10503
  • 财政年份:
    2022
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanistic analysis of Toxoplasma gondii sexual development in tissue culture and mouse models
组织培养和小鼠模型中弓形虫性发育的机制分析
  • 批准号:
    10738256
  • 财政年份:
    2022
  • 资助金额:
    $ 8.85万
  • 项目类别:
Development of Analysis and Design Methods of Systems That Fuse Various Models and Data in the IOT Era
物联网时代融合多种模型和数据的系统分析与设计方法的发展
  • 批准号:
    22K04172
  • 财政年份:
    2022
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The development of kinematic and kinetic multisegment foot models for gait analysis
用于步态分析的运动学和动力学多段足模型的开发
  • 批准号:
    RGPIN-2014-05109
  • 财政年份:
    2021
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Discovery Grants Program - Individual
Commercializing the μSIM: A Modular Platform for the Development and Analysis of Barrier Tissue Models
商业化μSIM:用于屏障组织模型开发和分析的模块化平台
  • 批准号:
    10385120
  • 财政年份:
    2020
  • 资助金额:
    $ 8.85万
  • 项目类别:
Metagenomic analysis of intestinal microbiota in hematologic malignancies and development of disease risk and prognostic models.
血液系统恶性肿瘤中肠道微生物群的宏基因组分析以及疾病风险和预后模型的开发。
  • 批准号:
    20K17401
  • 财政年份:
    2020
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The development of kinematic and kinetic multisegment foot models for gait analysis
用于步态分析的运动学和动力学多段足模型的开发
  • 批准号:
    RGPIN-2014-05109
  • 财政年份:
    2020
  • 资助金额:
    $ 8.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了