DMREF: Collaborative Research: Achieving Multicomponent Active Materials through Synergistic Combinatorial, Informatics-enabled Materials Discovery
DMREF:协作研究:通过协同组合、信息学支持的材料发现实现多组分活性材料
基本信息
- 批准号:1922111
- 负责人:
- 金额:$ 120.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical: Affordable, low-cost flexible electronics will revolutionize how society thinks about and uses devices in applications ranging from energy storage and conversion, displays, or sensors for environmental and health monitoring. Conjugated polymers can provide the key functional component for electrical performance; however, control of the thin-film, active-layer morphology presents a key challenge. This Designing Materials to Revolutionize and Engineer our Future (DMREF) project merges knowledge from polymer design, synthesis and processing, high-throughput combinatorial materials discovery, multiscale materials simulation, and materials informatics to stimulate the discovery of new generations of flexible, stretchable and high-temperature semiconductors enabled by blends of conjugated polymers and electrically inert polymers that exhibit unprecedented and robust performance. The discoveries will enable the widespread commercialization and utilization of flexible electronics. In addition, the project will develop generalizable materials genome methods for integration of high-throughput experiment and informatics in organic electronic systems. Students participants will realize multidisciplinary benefits. They will be cross-trained and have opportunities to expand their knowledge and experience through relevant additional collaborations; and they will be encouraged to participate in broadening experiences, such as industrial internships, teaching practicums and energy policy courses, based on individual interests and career goals. The PIs will build upon existing mentoring programs for female graduate students, using ongoing monthly lunch groups as a hub to provide professional development and leadership opportunities for students, expanding its reach through additional programs, including seminar speakers and panel discussions.Technical: Affordable, low-cost flexible electronics will revolutionize how society thinks about and uses devices in applications ranging from energy storage and conversion, displays, or sensors for environmental and health monitoring. However, satisfying the functional and economic requirements of target applications and the constraints of large-scale solution-based additive fabrication processes requires increasingly complex solution formulations. Dilution of the active semiconducting polymer in an insulating matrix is an exciting and emerging opportunity to achieve the desired functional attributes in an economically viable approach. In that regard a key challenge is control of the thin-film, active-layer morphology to achieve exceptional levels of charge transport performance that will be imperative for envisioned applications. Here, new polymer chemistry is combined with materials modeling to explore electronic properties and molecular scale interactions and dynamics in solution and blends to inform high-throughput experiments. These data will then serve as the key inputs of materials informatics approaches that will establish critical connections among composition, structure and processing. The objective is to build the materials genome that will provide knowledge to inform materials development at all stages along the structure-processing-function paradigm. The project will create a holistic foundation connecting molecular structure to polymer chain dynamics from the solution level to solidified thin-film morphology to electronic performance; and motivate the realization of ubiquitous, cost-effective and sustainable organic electronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:经济实惠、低成本的柔性电子产品将彻底改变社会对能源存储和转换、显示器或环境和健康监测传感器等应用中设备的看法和使用方式。共轭聚合物可以提供电性能的关键功能组件,然而,薄膜,有源层形态的控制提出了一个关键的挑战。这个设计材料革命和工程我们的未来(DMREF)项目融合了聚合物设计,合成和加工,高通量组合材料发现,多尺度材料模拟和材料信息学的知识,以刺激发现新一代的柔性,可拉伸和高温半导体,通过共轭聚合物和电惰性聚合物的混合物实现,表现出前所未有的强大性能。这些发现将使柔性电子产品的广泛商业化和利用成为可能。此外,该项目将开发可推广的材料基因组方法,用于有机电子系统中高通量实验和信息学的整合。学生参与者将实现多学科的好处。他们将接受交叉培训,并有机会通过相关的额外合作扩大他们的知识和经验;将鼓励他们根据个人兴趣和职业目标参加扩大经验的活动,如工业实习、教学实习和能源政策课程。PI将建立在现有的女研究生指导计划的基础上,利用正在进行的每月午餐小组作为枢纽,为学生提供专业发展和领导机会,通过额外的计划,包括研讨会发言人和小组讨论,扩大其影响力。经济实惠、低成本的柔性电子产品将彻底改变社会对设备的看法和使用方式,用于环境和健康监测的显示器或传感器。然而,满足目标应用的功能和经济要求以及大规模基于溶液的增材制造工艺的限制,需要越来越复杂的溶液配方。在绝缘基体中稀释活性半导体聚合物是以经济可行的方法实现所需功能属性的令人兴奋和新兴的机会。在这方面,一个关键的挑战是控制薄膜,活性层形态,以实现特殊水平的电荷传输性能,这将是必要的设想的应用。在这里,新的聚合物化学与材料建模相结合,探索溶液和共混物中的电子特性和分子尺度相互作用和动力学,为高通量实验提供信息。然后,这些数据将作为材料信息学方法的关键输入,这些方法将在成分,结构和加工之间建立关键联系。其目标是建立材料基因组,将提供知识,告知材料开发的所有阶段沿着结构-加工-功能的范例。该项目将创建一个整体基础,将分子结构与聚合物链动力学从溶液层面到固化薄膜形态再到电子性能联系起来;并推动实现无处不在、具有成本效益和可持续的有机电子产品。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Composition Gradient High-Throughput Polymer Libraries Enabled by Passive Mixing and Elevated Temperature Operability
- DOI:10.1021/acs.chemmater.2c01500
- 发表时间:2022-07
- 期刊:
- 影响因子:8.6
- 作者:Aaron L. Liu;E. M. Dogan-Guner;Michael McBride;R. Venkatesh;M. Gonzalez;E. Reichmanis;M. Grover;J. Meredith
- 通讯作者:Aaron L. Liu;E. M. Dogan-Guner;Michael McBride;R. Venkatesh;M. Gonzalez;E. Reichmanis;M. Grover;J. Meredith
Data Science Guided Experiments Identify Conjugated Polymer Solution Concentration as a Key Parameter in Device Performance
- DOI:10.1021/acsmaterialslett.1c00320
- 发表时间:2021-09
- 期刊:
- 影响因子:11.4
- 作者:R. Venkatesh;Yulong Zheng;Campbell Viersen;Aaron L. Liu;Carlos Silva;M. Grover;E. Reichmanis
- 通讯作者:R. Venkatesh;Yulong Zheng;Campbell Viersen;Aaron L. Liu;Carlos Silva;M. Grover;E. Reichmanis
Overlap concentration generates optimum device performance for DPP-based conjugated polymers
重叠浓度可为基于 DPP 的共轭聚合物提供最佳的器件性能
- DOI:10.1016/j.orgel.2023.106779
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Venkatesh, Rahul;Zheng, Yulong;Liu, Aaron L.;Zhao, Haoqun;Silva, Carlos;Takacs, Christopher J.;Grover, Martha A.;Meredith, J. Carson;Reichmanis, Elsa
- 通讯作者:Reichmanis, Elsa
The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for π-Conjugated Polymer Semiconductors
- DOI:10.1021/acsami.1c20994
- 发表时间:2022-01-16
- 期刊:
- 影响因子:9.5
- 作者:Callaway, Connor P.;Liu, Aaron L.;Reichmanis, Elsa
- 通讯作者:Reichmanis, Elsa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martha Grover其他文献
OpenCrystalData: An open-access particle image database to facilitate learning, experimentation, and development of image analysis models for crystallization processes.
OpenCrystalData:一个开放访问的粒子图像数据库,用于促进结晶过程图像分析模型的学习、实验和开发。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yash Barhate;Christopher Boyle;Hossein Salami;Wei;Nina Taherimakhsousi;Charlie Rabinowitz;Andreas Bommarius;Javier Cardona;Zoltan K. Nagy;Ronald Rousseau;Martha Grover - 通讯作者:
Martha Grover
Martha Grover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martha Grover', 18)}}的其他基金
Collaborative Research: CDI-Type II: First-Principles Based Control of Multi-Scale Meta-Material Assembly Process
合作研究:CDI-Type II:基于第一原理的多尺度超材料组装过程控制
- 批准号:
1124678 - 财政年份:2011
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Robust optimization of nanoparticle synthesis in a supercritical CO2 process for energy applications
能源应用超临界二氧化碳工艺中纳米颗粒合成的稳健优化
- 批准号:
0933430 - 财政年份:2009
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
CAREER: A Systems Approach to Materials Processing
职业:材料加工的系统方法
- 批准号:
0348397 - 财政年份:2004
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 120.64万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 120.64万 - 项目类别:
Standard Grant