DMREF: Collaborative research: Data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids

DMREF:协作研究:数据驱动的合成途径发现和区分一维范德华键合固体的电子现象

基本信息

  • 批准号:
    1922312
  • 负责人:
  • 金额:
    $ 56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: This project explores a recently discovered class of more than 400 materials that form one-dimensional wires of bonded atoms surrounded by a tubular, two-dimensional van der Waals gap avoiding any strong atomic bonds between wires. A combination of predictive computational techniques, chemical preparation, and physical characterization will be employed to identify a spectrum of scientifically and technologically important properties of these materials with a focus on electrical transport properties, mechanical response and stability, and phase transformations. This project aims to leverage a spectrum of data mining, machine learning, and materials property calculation techniques to accelerate the identification of the most promising subset of these 400 materials for synthesis and testing. The PIs will train the next generation of scientists and engineers by providing interdisciplinary research opportunities for undergraduate and graduate students with attention given to attracting those from underrepresented groups. Emphasis will be placed on training with respect to computationally-led and data-drive approaches to materials research. Specifically, undergraduate students will develop Java-based software for materials science and graduate students will host a podcast aimed at disseminating developments in data-driven computational science.Technical Description: Bulk crystals of graphite and other materials composed of 2-dimensional van der Waals (vdW) layers exhibit numerous important properties in the bulk that are preserved as the material is thinned to atomic thickness, e.g. the high electrical conductivity of graphene. This distinguishes them from native bulk materials that do not exhibit such vdW layered structure, such as copper, whose properties change dramatically as it is thinned below a few atomic layers. Unlike 2D layered materials, the 1-dimensional vdW materials of this project have received relatively little research attention, but are likely to exhibit many of the useful properties of their 2D counterparts. One hypothesis is that the presence of vdW gaps and the absence of dangling bonds and large single crystal domains inhibits carrier scattering at the surface of such materials and, thus, allows for electronic transport at a resistivity almost independent of wire cross section. Recent synthesis work by the project participants has revealed excellent transport properties of such materials when thinned to nanoscale cross sections, rivaling the favorable characteristics of the native bulk form of copper, with potential applications in the miniaturization of electronic devices. Another hypothesis is that these materials may be more likely to exhibit electronic or structural phase changes that can be engineered for low power electronic memories and other applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目探索了最近发现的一类超过400种材料,这些材料形成由管状二维货车德瓦尔斯间隙包围的键合原子的一维线,避免了线之间的任何强原子键。预测计算技术,化学制备和物理表征的组合将用于确定这些材料的科学和技术重要特性的光谱,重点是电传输特性,机械响应和稳定性以及相变。该项目旨在利用一系列数据挖掘、机器学习和材料性能计算技术,加速识别这400种材料中最有前途的子集,以进行合成和测试。PI将通过为本科生和研究生提供跨学科研究机会来培养下一代科学家和工程师,并注意吸引来自代表性不足群体的学生。重点将放在培训方面的计算为主导的和数据驱动的方法,以材料研究。具体而言,本科生将开发基于Java的材料科学软件,研究生将主持旨在传播数据驱动计算科学发展的播客。技术描述:由二维货车范德华(vdW)层组成的石墨和其它材料的块体晶体在块体中表现出许多重要的性质,这些性质在材料变薄至原子厚度时得以保留,例如石墨烯的高导电性。这将它们与不表现出这种vdW层状结构的原生体材料(例如铜)区分开来,铜的性质随着其在几个原子层以下变薄而急剧变化。与2D层状材料不同,该项目的一维vdW材料受到的研究关注相对较少,但可能表现出其2D对应物的许多有用特性。一种假设是,vdW间隙的存在和悬挂键和大的单晶域的情况下抑制载流子在这种材料的表面处的散射,因此,允许在电阻率几乎独立于导线横截面的电子传输。项目参与者最近的合成工作揭示了这种材料在减薄到纳米级横截面时具有优异的传输性能,可与原生块状铜的有利特性相媲美,并在电子设备的小型化方面具有潜在的应用。另一种假设是,这些材料可能更有可能表现出电子或结构相变,可以设计用于低功耗电子存储器和其他应用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncovering the effects of interface-induced ordering of liquid on crystal growth using machine learning
  • DOI:
    10.1038/s41467-020-16892-4
  • 发表时间:
    2020-06-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Freitas, Rodrigo;Reed, Evan J.
  • 通讯作者:
    Reed, Evan J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Felipe Homrich da Jornada其他文献

Felipe Homrich da Jornada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Felipe Homrich da Jornada', 18)}}的其他基金

CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
  • 批准号:
    2238328
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了