NRI: FND: Robust Grasping by Integrating Machine Learning with Physical Models
NRI:FND:通过将机器学习与物理模型相结合实现鲁棒抓取
基本信息
- 批准号:1924984
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to make robot grasping reliable, so that robots can pick up a wide variety of objects with minimal risk of dropping them. Except for carefully-controlled settings like factories, even the best current robotic manipulation systems drop over 5% of the objects they attempt to grasp and lift. Reliable grasping would open a vast range of practical applications in many areas of society. For example, household assistance for the elderly and disabled requires the ability to grasp and move objects, but robots that drop many objects would not be useful for many users. In addition to personal assistance functions, commercial applications that require reliable grasping range from warehouses and flexible manufacturing to food service and cleaning. Contact sensing is essential for reliable robotic grasping in unstructured environments, but existing methods for using sensor signals have not been effective. The two prior approaches to creating reliable grasping using contact sensing were physics-based grasp analysis and black-box machine learning algorithms, and neither has proved sufficient in terms of accuracy and reliability. It is not clear whether the limitations were due to deficiencies in the physical models, learning algorithms, or sensors. This project will provide the first characterization of contact sensors in carefully-controlled grasping experiments, with independent sensors providing a gold standard for comparison. The project will use the data from those experiments to investigate merging the physical modeling and machine learning approaches. By providing an improved understanding of their properties in predicting grasp stability it will allow the joining of both approaches in a way that maintains the best properties of each: interpretability and generalizability from physical modeling and flexibility and accuracy from machine learning. By pushing prediction accuracy and reliability to its peak, the project will also characterize the limits on sensor performance and define, for the first time, the needed sensor information in terms of task requirements. The results will serve as the basis for grasping and manipulation systems for unstructured environments and spell out the tradeoffs among sensor hardware, model-based signal interpretation and control, and data-driven signal interpretation and control. The successful integration of model-based and data-driven approaches may serve as an exemplar for many other fields where models are useful but incomplete.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在使机器人抓取可靠,以便机器人能够以最小的风险拾取各种各样的物体。除了像工厂这样精心控制的环境外,即使是目前最好的机器人操作系统,它们试图抓住和举起的物体也会掉下5%以上。可靠的抓取将在社会的许多领域开辟广泛的实际应用。例如,为老年人和残疾人提供的家庭帮助需要能够抓住和移动物体,但是掉落许多物体的机器人对许多用户来说并不有用。除了个人辅助功能外,需要可靠抓取的商业应用范围从仓库和灵活制造到食品服务和清洁。接触感测对于非结构化环境中的可靠机器人抓取是必不可少的,但是用于使用传感器信号的现有方法并不有效。使用接触感测创建可靠抓取的两种先前方法是基于物理的抓取分析和黑盒机器学习算法,并且在准确性和可靠性方面都没有被证明是足够的。目前尚不清楚这些限制是否是由于物理模型、学习算法或传感器的缺陷。该项目将提供接触传感器在仔细控制的抓取实验中的第一个表征,独立传感器提供了比较的金标准。该项目将使用这些实验的数据来研究合并物理建模和机器学习方法。通过提供对它们在预测抓握稳定性方面的属性的更好理解,它将允许以保持每种方法的最佳属性的方式加入这两种方法:物理建模的可解释性和可推广性以及机器学习的灵活性和准确性。通过将预测准确性和可靠性推向顶峰,该项目还将描述传感器性能的极限,并首次根据任务要求定义所需的传感器信息。研究结果将作为非结构化环境下抓取和操纵系统的基础,并阐明传感器硬件、基于模型的信号解释和控制以及数据驱动的信号解释和控制之间的权衡。基于模型和数据驱动的方法的成功整合可以作为模型有用但不完整的许多其他领域的典范。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Role of Tactile Sensing in Learning and Deploying Grasp Refinement Algorithms
- DOI:10.1109/iros47612.2022.9981915
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:A. Koenig;Zixi Liu;Lucas Janson;R. Howe
- 通讯作者:A. Koenig;Zixi Liu;Lucas Janson;R. Howe
Beyond Coulomb: Stochastic Friction Models for Practical Grasping and Manipulation
- DOI:10.1109/lra.2023.3292580
- 发表时间:2023-08
- 期刊:
- 影响因子:5.2
- 作者:Zixi Liu;R. Howe
- 通讯作者:Zixi Liu;R. Howe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Howe其他文献
Spatial patterns of tree species richness in two temperate forests
两种温带森林树种丰富度的空间格局
- DOI:
10.1111/j.1365-2745.2011.01857.x - 发表时间:
2011-11 - 期刊:
- 影响因子:5.5
- 作者:
Xugao Wang;Thorsten Wieg;Amy Wolf;Robert Howe;Stuart J. Davies;Zhanqing Hao - 通讯作者:
Zhanqing Hao
Phylogenetic and functional diversity area relationships in two temperate forests
两个温带森林的系统发育和功能多样性区域关系
- DOI:
10.1111/j.1600-0587.2012.00011.x - 发表时间:
2013-08 - 期刊:
- 影响因子:5.9
- 作者:
Xugao Wang;Xuejiao Bai;Dingliang Xing;Zhanqing Hao;Nathan G. Swenson;Thorsten Wieg;Amy Wolf;Robert Howe;Fei Lin;Ji Ye;Zuoqiang Yuan;Shuai Shi - 通讯作者:
Shuai Shi
Lithium Battery Fires: Implications for Air Medical Transport
- DOI:
10.1016/j.amj.2011.12.003 - 发表时间:
2012-09-01 - 期刊:
- 影响因子:
- 作者:
Frank Thomas;Gordon Mills;Robert Howe;Jim Zobell - 通讯作者:
Jim Zobell
Consideration of Geography and Wetland Geomorphic Type in the Development of Great Lakes Coastal Wetland Bird Indicators
- DOI:
10.1007/s10393-007-0100-x - 发表时间:
2007-05-09 - 期刊:
- 影响因子:2.200
- 作者:
JoAnn Hanowski;Nick Danz;Robert Howe;Gerald Niemi;Ron Regal - 通讯作者:
Ron Regal
Latitudinal scaling of aggregation with abundance and coexistence in forests
森林中聚集度与丰度和共存的纬度尺度
- DOI:
10.1038/s41586-025-08604-z - 发表时间:
2025-02-26 - 期刊:
- 影响因子:48.500
- 作者:
Thorsten Wiegand;Xugao Wang;Samuel M. Fischer;Nathan J. B. Kraft;Norman A. Bourg;Warren Y. Brockelman;Guanghong Cao;Min Cao;Wirong Chanthorn;Chengjin Chu;Stuart Davies;Sisira Ediriweera;C. V. Savitri Gunatilleke;I. A. U. Nimal Gunatilleke;Zhanqing Hao;Robert Howe;Mingxi Jiang;Guangze Jin;W. John Kress;Buhang Li;Juyu Lian;Luxiang Lin;Feng Liu;Keping Ma;William McShea;Xiangcheng Mi;Jonathan A. Myers;Anuttara Nathalang;David A. Orwig;Guochun Shen;Sheng-Hsin Su;I-Fang Sun;Xihua Wang;Amy Wolf;Enrong Yan;Wanhui Ye;Yan Zhu;Andreas Huth - 通讯作者:
Andreas Huth
Robert Howe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Howe', 18)}}的其他基金
NRI: Achieving Selective Kinematics and Stiffness in Flexible Robotics
NRI:在柔性机器人中实现选择性运动学和刚度
- 批准号:
1637838 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
PFI:AIR - TT: High-Reliability Robot Grasping for Per-Item Distribution
PFI:AIR - TT:用于按件分配的高可靠性机器人抓取
- 批准号:
1500178 - 财政年份:2015
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
I-Corps: Robotic Hands for warehousing & Automation
I-Corps:仓储机械手
- 批准号:
1445364 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Robotic Hands: Understanding and Implementing Adaptive Grasping
RI:媒介:协作研究:机器人手:理解和实施自适应抓取
- 批准号:
0905180 - 财政年份:2009
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NYI: Sensing and Motor Control in Humans and Robots
NYI:人类和机器人的传感和运动控制
- 批准号:
9357768 - 财政年份:1993
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Student Science Training For High Ability Secondary School Students
高能力中学生科学训练
- 批准号:
7728084 - 财政年份:1978
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant