ATD: Algorithms for Point Processes on Networks for Threat Detection
ATD:用于威胁检测的网络点处理算法
基本信息
- 批准号:1925263
- 负责人:
- 金额:$ 19.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in a world full of networks: contact and social networks connect us to our family, friends and colleagues; computer networks such as Internet allow us to access huge amount of data and information remotely; traffic and logistical networks deliver people, water/food, and all kinds of goods faster than ever before. While we enjoy the conveniences brought by these networks, we must also be aware of the threats and harms if they get jeopardized by, for example, infectious virus, cyber-attacks, etc. The goal of this project is to develop computational algorithms for automated early threat detection based on novel and rigorous mathematical modeling and data analysis concepts. In particular, the activities generated by human and other sources on these networks are modeled as the so-called interactive stochastic point processes. These dynamics are studied and inferred in a mathematical framework of jump stochastic differential equations, which is further extended to integrate mean-field approximation and deep learning techniques that fully leverage the existing big data for fast and accurate threat detection. This project will exploit three closely related computational problems in-depth: influence prediction, optimal sensor allocation, and source identification, all of which are fundamental in threat detection applications on large, heterogeneous, real-world networks.This project will exploit two novel approaches to influence prediction based on a jump stochastic differential equation (JSDE) formulation and an integration of mean field approximation and deep learning techniques. The JSDE formulation yields a concise and exact mathematical formulation of the temporal point process that takes into account the known network structure and mechanism of epidemic spread; and the deep neural mean field approach deduced from JSDE formulation maps the classical difference method in numerical analysis into a structured multi-layer residual network, where the unknown bias of mean field approximation can be effectively learned from observed cascade data for rapid influence prediction. These prediction algorithms will be used in the optimal sensor allocation and epidemic source identification problems for threat detection and mitigation. The results produced in this project are expected to make significant contributions to our understanding of interdependent activities on large-scale heterogeneous networks and the development of new, efficient algorithms for threat detection. The outcomes of the project include novel computational techniques, rigorous mathematical theory and analysis, and efficient numerical algorithms for threat detection applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们生活在一个充满网络的世界:联系和社交网络将我们与家人、朋友和同事联系起来;互联网等计算机网络使我们能够远程访问大量数据和信息;交通和物流网络比以往任何时候都更快地运送人员、水/食物和各种商品。在享受这些网络带来的便利的同时,我们也必须意识到如果它们受到例如传染性病毒、网络攻击等的威胁和危害。该项目的目标是基于新的和严格的数学建模和数据分析概念开发用于自动早期威胁检测的计算算法。特别地,人类和其他来源在这些网络上产生的活动被建模为所谓的交互随机点过程。在跳跃随机微分方程的数学框架中对这些动态进行了研究和推断,该框架进一步扩展到集成平均场近似和深度学习技术,充分利用现有的大数据来快速准确地检测威胁。这个项目将深入研究三个密切相关的计算问题:影响预测、传感器最优分配和源识别,所有这些都是大型、异质、真实世界网络上的威胁检测应用程序的基础。本项目将使用两种新的方法来进行影响预测,该方法基于跳跃随机微分方程(JSDE)公式以及平均场近似和深度学习技术的集成。JSDE公式给出了考虑已知网络结构和疫情传播机制的简明而精确的时间点过程的数学公式;而由JSDE公式推导出的深度神经平均场方法将数值分析中的经典差分法映射到结构化的多层残差网络中,其中平均场近似的未知偏差可以从观测的级联数据中有效地学习以用于快速影响预测。这些预测算法将用于传感器的最优分配和疫源识别问题,以进行威胁检测和缓解。该项目的成果有望对我们理解大规模异质网络上相互依赖的活动以及开发新的、有效的威胁检测算法做出重大贡献。该项目的成果包括新颖的计算技术、严谨的数学理论和分析以及用于威胁检测应用的高效数值算法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical solution of inverse problems by weak adversarial networks
- DOI:10.1088/1361-6420/abb447
- 发表时间:2020-02
- 期刊:
- 影响因子:2.1
- 作者:Gang Bao;X. Ye;Yaohua Zang;Haomin Zhou
- 通讯作者:Gang Bao;X. Ye;Yaohua Zang;Haomin Zhou
High-Dimensional Optimal Density Control with Wasserstein Metric Matching
- DOI:10.1109/cdc49753.2023.10384042
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Shaojun Ma;Mengxue Hou;X. Ye;Haomin Zhou
- 通讯作者:Shaojun Ma;Mengxue Hou;X. Ye;Haomin Zhou
A Learnable Variational Model for Joint Multimodal MRI Reconstruction and Synthesis
- DOI:10.48550/arxiv.2204.03804
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Wanyu Bian;Qingchao Zhang;X. Ye;Yunmei Chen
- 通讯作者:Wanyu Bian;Qingchao Zhang;X. Ye;Yunmei Chen
Learned Alternating Minimization Algorithm for Dual-domain Sparse-View CT Reconstruction
- DOI:10.48550/arxiv.2306.02644
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chi-Jiao Ding;Qingchao Zhang;Ge Wang;X. Ye;Yunmei Chen
- 通讯作者:Chi-Jiao Ding;Qingchao Zhang;Ge Wang;X. Ye;Yunmei Chen
Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization
弱光滑凸约束优化中水平束方法的加速技术
- DOI:10.1007/s10589-020-00208-9
- 发表时间:2020
- 期刊:
- 影响因子:2.2
- 作者:Chen, Yunmei;Ye, Xiaojing;Zhang, Wei
- 通讯作者:Zhang, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing Ye其他文献
LAMA-Net: A Convergent Network Architecture for Dual-Domain Reconstruction
- DOI:
10.1007/s10851-025-01249-7 - 发表时间:
2025-05-13 - 期刊:
- 影响因子:1.500
- 作者:
Chi Ding;Qingchao Zhang;Ge Wang;Xiaojing Ye;Yunmei Chen - 通讯作者:
Yunmei Chen
“Returning beyond cancer”—a journey of professional reinvention for nurses
- DOI:
10.1007/s00520-025-09467-w - 发表时间:
2025-04-25 - 期刊:
- 影响因子:3.000
- 作者:
Qingyi Xue;Wenjing Xu;Xulu Wang;Xiaojing Ye;Wanting Hong;Qianqian Chen;Xin Lu;Xiaolei Wang;Chunmei Zhang - 通讯作者:
Chunmei Zhang
GENE THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS IN NZB/W F1 MICE
NZB/W F1 小鼠系统性红斑狼疮的基因治疗
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Xiaojing Ye - 通讯作者:
Xiaojing Ye
Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice
边缘下皮层抑制性神经元中 Plexin-A1 的表达调节雄性小鼠恐惧记忆的特异性
- DOI:
10.1038/s41386-021-01177-1 - 发表时间:
2021-09 - 期刊:
- 影响因子:7.6
- 作者:
Xin Cheng;Yan Zhao;Shuyu Zheng;Panwu Zhao;Jin-lin Zou;Wei-Jye Lin;Wen Wu;Xiaojing Ye - 通讯作者:
Xiaojing Ye
Neural Control of Parametric Solutions for High-Dimensional Evolution PDEs
高维演化偏微分方程参数解的神经控制
- DOI:
10.1137/23m1549870 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nathan Gaby;Xiaojing Ye;Haomin Zhou - 通讯作者:
Haomin Zhou
Xiaojing Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing Ye', 18)}}的其他基金
Collaborative Research: Theory, computation and applications of parameterized Wasserstein gradient and Hamiltonian flows
合作研究:参数化 Wasserstein 梯度和哈密顿流的理论、计算和应用
- 批准号:
2307466 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Learning Regularizations of Inverse Problems with High Data Heterogeneity
合作研究:高数据异质性逆问题的学习正则化算法
- 批准号:
2152960 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
Collaborative Research: Prediction, Optimization and Control for Information Propagation on Networks: A Differential Equation and Mass Transportation Based Approach
合作研究:网络信息传播的预测、优化和控制:基于微分方程和大众运输的方法
- 批准号:
1620342 - 财政年份:2016
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
相似海外基金
On the convergence rate improvement of fixed point algorithms and its applications
论定点算法收敛速度的提高及其应用
- 批准号:
23K03235 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Development of novel machine learning algorithms for registration of point clouds and tracking surgical tools
开发用于点云配准和跟踪手术工具的新型机器学习算法
- 批准号:
566675-2021 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Alliance Grants
Development of novel machine learning algorithms for registration of point clouds and tracking surgical tools
开发用于点云配准和跟踪手术工具的新型机器学习算法
- 批准号:
566675-2021 - 财政年份:2021
- 资助金额:
$ 19.97万 - 项目类别:
Alliance Grants
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2021
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
CRII: AF: RUI: Engineering and Experiments with Geometric Spanner Construction Algorithms for Massive Point Sets
CRII:AF:RUI:大规模点集的几何扳手构造算法的工程和实验
- 批准号:
1947887 - 财政年份:2020
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2020
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2019
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Monotone Fixed-Point Computation Problems
单调定点计算问题的算法
- 批准号:
2265056 - 财政年份:2019
- 资助金额:
$ 19.97万 - 项目类别:
Studentship
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2018
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




