CCRI: MEDIUM: Collaborative Research: F1/10 RACECAR: Community Platforms for Safe, Secure and Coordinated Autonomy
CCRI:中:合作研究:F1/10 RACECAR:安全、可靠和协调自治的社区平台
基本信息
- 批准号:1925500
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
F1/10 is a shared, open-sourced infrastructure for the development and validation of new approaches to autonomous perception, planning, control and coordination. This community platform will facilitate autonomous system research, education and bench-marking through the creation of a new class of high-performance autonomous racing cars, that are 1/10th the size of a real (Formula 1) car and can reach a top speed of 50mph. The goal is to enable a wide range of experimental research and education in Safe, Secure, Coordinated and Efficient Autonomy. Much of today's research on Autonomous vehicles (AVs) is limited to experimentation on expensive commercial vehicles that require large teams with diverse skills and power-hungry platforms. Testing the limits of safety and performance on such vehicles is costly and hazardous. It is also outside the reach of most academic departments and research groups. Furthermore, little research has been devoted to the development of safety benchmarks and infrastructure for certifying autonomous systems, guaranteeing the safety of data-driven decision making, power-efficient perception and control for efficient autonomy, active coordinated safety for large vehicle fleets, and cyber-physical security of autonomous vehicles. All of these are fundamental requirements on the road to achieving the social benefits of autonomous vehicles, and autonomous systems more generally. F1/10 provides rapid prototyping hardware, software and algorithmic platforms, with full documentation and community support for research and development of future autonomous systems. Autonomous vehicles are emerging as integral components of the US economy, and in the future, they may be at the heart of the national economy's competitiveness in transportation and logistics. Enabling such a transformation requires building reliably safe and efficient autonomous vehicles and the contributions of a very diverse community of researchers from engineering, human factors and computer science. The project's intellectual merit resides in the design and deployment of scaled autonomous cars that are affordable, safe to experiment with, easy to customize, can be shared widely, and that can support a wide range of necessary research in autonomous vehicles. This project's broader goal is to stimulate and accelerate cross-disciplinary research in autonomous vehicle safety and efficiency, at a time when such work is urgently needed. This project will enable researchers in autonomous hardware, safety, security, and traffic to produce high-confidence autonomous systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
F1/10是一个共享的、开源的基础设施,用于开发和验证自主感知、规划、控制和协调的新方法。这个社区平台将通过创建新型高性能自动驾驶赛车来促进自动驾驶系统的研究、教育和基准测试,这些赛车的大小只有真正的(一级方程式)赛车的十分之一,最高时速可达50英里。其目标是在安全、可靠、协调和高效的自主驾驶方面开展广泛的实验研究和教育。目前,大部分关于自动驾驶汽车的研究都局限于昂贵的商用车试验,这需要拥有不同技能的大型团队和耗电平台。在此类车辆上测试安全性和性能的极限既昂贵又危险。它也超出了大多数学术部门和研究小组的能力范围。此外,对于自动驾驶系统认证的安全基准和基础设施的开发,保证数据驱动决策的安全性,高效自动驾驶的节能感知和控制的安全性,大型车队的主动协调安全性以及自动驾驶车辆的网络物理安全性的研究很少。所有这些都是实现自动驾驶汽车和更广泛的自动驾驶系统社会效益的基本要求。F1/10提供快速原型硬件、软件和算法平台,为未来自主系统的研究和开发提供完整的文档和社区支持。自动驾驶汽车正在成为美国经济不可或缺的组成部分,未来,它们可能会成为美国经济在运输和物流领域竞争力的核心。实现这样的转变需要制造可靠、安全、高效的自动驾驶汽车,以及来自工程、人为因素和计算机科学领域的非常多样化的研究人员的贡献。该项目的智力价值在于设计和部署规模较小的自动驾驶汽车,这些汽车价格合理,试验安全,易于定制,可以广泛共享,并且可以支持自动驾驶汽车的广泛必要研究。该项目更广泛的目标是刺激和加速自动驾驶汽车安全性和效率的跨学科研究,目前迫切需要这方面的工作。该项目将使自主硬件、安全、安保和交通领域的研究人员能够生产出高可信度的自主系统。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Sim2Real Transfer of Autonomy Algorithms using AutoDRIVE Ecosystem
使用 AutoDRIVE 生态系统实现自主算法的 Sim2Real 迁移
- DOI:10.1016/j.ifacol.2023.12.037
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Samak, Chinmay;Samak, Tanmay;Krovi, Venkat
- 通讯作者:Krovi, Venkat
Virtual Evaluation of Deep Learning Techniques for Vision-Based Trajectory Tracking
基于视觉的轨迹跟踪深度学习技术的虚拟评估
- DOI:10.4271/2022-01-0369
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Salvi, Ameya;Buzhardt, Jake;Tallapragda, Phanindra;Krovi, Venkat N;Smereka, Jonathon M.;Brudnak, Mark
- 通讯作者:Brudnak, Mark
Adaptive and Reference Shaping Control for Steer-By-Wire Vehicles in High-Speed Maneuvers
高速机动中线控转向车辆的自适应和参考整形控制
- DOI:10.1016/j.ifacol.2021.11.170
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Srinivasan, Srivatsan;Schmid, Matthias J.;Krovi, Venkat
- 通讯作者:Krovi, Venkat
AutoDRIVE: A Comprehensive, Flexible and Integrated Digital Twin Ecosystem for Autonomous Driving Research & Education
AutoDRIVE:用于自动驾驶研究的全面、灵活、集成的数字孪生生态系统
- DOI:10.3390/robotics12030077
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Samak, Tanmay;Samak, Chinmay;Kandhasamy, Sivanathan;Krovi, Venkat;Xie, Ming
- 通讯作者:Xie, Ming
Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications
开发 ADAS 应用程序的仿真即服务 (SaaS) 实施方法
- DOI:10.4271/2021-01-0116
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kagalwala, Huzefa;Srivastava, Siddhant;Venkatesan, Manikanda Balaji;Srinivasan, Srivatsan;Krovi, Venkat N
- 通讯作者:Krovi, Venkat N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkat Krovi其他文献
Venkat Krovi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkat Krovi', 18)}}的其他基金
PHASE II IUCRC Clemson University: Center for Robots and Sensors for Human Well-Being
第二阶段 IUCRC 克莱姆森大学:促进人类福祉的机器人和传感器中心
- 批准号:
1939058 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
RI: Small: Dynamic Payload Transport and Manipulation by Teams of Cooperating Mobile Robotic-Cranes
RI:小型:协作移动机器人起重机团队的动态有效负载运输和操纵
- 批准号:
1710898 - 财政年份:2016
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
RI: Small: Dynamic Payload Transport and Manipulation by Teams of Cooperating Mobile Robotic-Cranes
RI:小型:协作移动机器人起重机团队的动态有效负载运输和操纵
- 批准号:
1319084 - 财政年份:2013
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CAREER: Generalized Image Understanding with Probabilistic Ontologies and Dynamic Adaptive Graph Hierarchies
职业:利用概率本体论和动态自适应图层次结构进行广义图像理解
- 批准号:
0845282 - 财政年份:2009
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CRI: IAD: A Real-Time Haptic Immersive Virtual Environment (RT-HIVE)
CRI:IAD:实时触觉沉浸式虚拟环境 (RT-HIVE)
- 批准号:
0751132 - 财政年份:2008
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CAREER: Cooperative Payload Transport by Robot Collectives
职业:机器人集体的合作有效负载运输
- 批准号:
0347653 - 财政年份:2004
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
- 批准号:
2245250 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:媒介:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
- 批准号:
2309477 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:媒介:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
- 批准号:
2204785 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
- 批准号:
2120279 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning
合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境
- 批准号:
2120369 - 财政年份:2021
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: Open-Source, State-of-the-Art Symbolic Model-Checking Framework
CCRI:媒介:协作研究:开源、最先进的符号模型检查框架
- 批准号:
2016597 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: Open-Source, State-of-the-Art Symbolic Model-Checking Framework
CCRI:媒介:协作研究:开源、最先进的符号模型检查框架
- 批准号:
2016592 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: Open-Source, State-of-the-Art Symbolic Model-Checking Framework
CCRI:媒介:协作研究:开源、最先进的符号模型检查框架
- 批准号:
2016656 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: mu-Net: Infrastructure to Advance Mobile Underwater Wireless Networking Research
CCRI:媒介:合作研究:mu-Net:推进移动水下无线网络研究的基础设施
- 批准号:
2016726 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: Hardware-in-the-Loop and Remotely-Accessible/Configurable/Programmable Internet of Things (IoT) Testbeds
CCRI:媒介:协作研究:硬件在环和远程访问/可配置/可编程物联网 (IoT) 测试平台
- 批准号:
2016415 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant