Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
基本信息
- 批准号:1711849
- 负责人:
- 金额:$ 5.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-11-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:The understanding of, and control over, the optical properties of materials provides important insight into the fundamentals of light-matter interaction. At the same time, these capabilities serve as the foundation for the design and development of novel applications of optical science. This Materials World Network project explores the science behind the interaction of light with exotic material structures having vanishingly small dielectric permittivity, also known as epsilon-near-zero (ENZ) materials, that are potentially able to dramatically suppress diffraction of light and to extend the applicability of the quasi-static approximation to wavelength-scale systems. In this project, the researchers will create a novel material platform of "designer" ENZ media and will use this platform for building an analytical description of the optics of ENZ-related systems. Specifically, a set of experimental techniques will be developed for subwavelength lateral control of the permittivity profile of our materials, targeting important visible and IR frequency ranges. Optical characterization of these structures will be used to provide the foundation for novel numerical and analytical techniques capable of describing the light-matter interaction in complex ENZ-based media. It is expected that both the experimental and theoretical results of this work will have broader application for plasmonic- and meta- materials across the UV to THz wavelength ranges. The students involved in the project will benefit from the unique exposure to modern interdisciplinary projects combining materials science, chemistry, physics, and applied mathematics, and involving multiple institutions across the globe. NON-TECHNICAL SUMMARY:Optical science is increasingly interwoven with many aspects of our everyday life, from optical communications, to imaging, to a broad range of optical sensing technologies in health-, environmental, and security-related applications. New optical materials, with unique, yet designer-enabled, properties, promise to further improve the quality or our life, and perhaps as importantly, provide a better understanding of the fundamental interaction between two building blocks of our Universe, light and matter. In this Materials World Network project, an international team will develop a unique new class of materials, known as epsilon-near-zero materials, and analyze the interaction of these materials with light. This research has the potential to provide a novel material platform for merging optics and electronics technologies, bringing together the benefits of high-speed optical communications with the compactness of integrated circuits. The complementary expertise of the participants will provide a unique opportunity to expose participating students to modern interdisciplinary international collaboration, enhancing multi-discipline and multi-cultural exchange. The interaction between the research teams and the broader community will aim at increasing the participation of emerging scientists in STEM-related disciplines.This project is supported by the Electronic and Photonic Materials program and Office of Special Programs, Division of Materials Research.
技术总结:对材料光学性质的理解和控制为了解光与物质相互作用的基本原理提供了重要的见解。同时,这些能力也是设计和开发光学科学新应用的基础。这个材料世界网络项目探索了光与具有极小介电常数的奇异材料结构相互作用背后的科学,也称为ε近零(ENZ)材料,这些材料可能能够显著抑制光的衍射并将准静态近似的适用性扩展到波长尺度系统。在这个项目中,研究人员将创建一个“设计师”ENZ媒体的新材料平台,并将使用这个平台来构建ENZ相关系统的光学分析描述。具体来说,一组实验技术将开发用于我们的材料的介电常数分布的亚波长横向控制,针对重要的可见光和红外频率范围。这些结构的光学特性将被用来提供新的数值和分析技术的基础,能够描述在复杂的ENZ为基础的介质中的光-物质相互作用。预计这项工作的实验和理论结果将在紫外到太赫兹波长范围内对等离子体和Meta材料有更广泛的应用。参与该项目的学生将受益于现代跨学科项目的独特接触,这些项目结合了材料科学,化学,物理和应用数学,并涉及地球仪的多个机构。光学科学越来越多地与我们日常生活的许多方面交织在一起,从光通信到成像,再到健康,环境和安全相关应用中的广泛光学传感技术。新的光学材料,具有独特的,但设计师启用,属性,承诺进一步提高我们的生活质量,也许同样重要的是,提供了一个更好地了解我们的宇宙,光和物质的两个基本组成部分之间的基本相互作用。在这个材料世界网络项目中,一个国际团队将开发一种独特的新型材料,称为ε-近零材料,并分析这些材料与光的相互作用。这项研究有可能为融合光学和电子技术提供一种新的材料平台,将高速光通信的好处与集成电路的紧凑性结合在一起。参与者的互补专业知识将提供一个独特的机会,让参与学生接触现代跨学科的国际合作,加强多学科和多文化的交流。研究团队和更广泛的社区之间的互动将旨在增加新兴科学家在STEM相关学科的参与。该项目由电子和光子材料计划和材料研究部特别计划办公室支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Wasserman其他文献
Anterior capsular tears and loop fixation of posterior chamber intraocular lenses.
前囊撕裂和后房型人工晶状体环固定。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Daniel Wasserman;David J. Apple;V. E. Castaneda;J. Tsai;Robin C. Morgan;E. Assia - 通讯作者:
E. Assia
Granulomatous hepatitis associated with glyburide
- DOI:
10.1007/bf02093822 - 发表时间:
1996-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Daisy Saw;Ernest Pitman;Maung Maung;Panas Savasatit;Daniel Wasserman;C. K. Yeung - 通讯作者:
C. K. Yeung
Loss mechanisms in mid-infrared extraordinary optical transmission gratings.
中红外非凡光传输光栅的损耗机制。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:3.8
- 作者:
T. Ribaudo;B. Passmore;K. Freitas;E. Shaner;J. Cederberg;Daniel Wasserman - 通讯作者:
Daniel Wasserman
InSb pixel loaded microwave resonator for high-speed mid-wave infrared detection
- DOI:
10.1016/j.infrared.2020.103390 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Yinan Wang;Sukrith Dev;Frank Yang;Leland Nordin;Yimeng Wang;Andrew Briggs;Monica Allen;Jeffery Allen;Emanuel Tutuc;Daniel Wasserman - 通讯作者:
Daniel Wasserman
Plasmon-enhanced distributed Bragg reflectors
等离子增强分布式布拉格反射器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Morgan Bergthold;Daniel Wasserman;A. Muhowski - 通讯作者:
A. Muhowski
Daniel Wasserman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Wasserman', 18)}}的其他基金
Conference: The Electronic Materials Conference
会议:电子材料会议
- 批准号:
2414428 - 财政年份:2024
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Broadening Participation in the 2023 Electronic Materials Conference
扩大2023年电子材料会议参与范围
- 批准号:
2316747 - 财政年份:2023
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Broadening Participation in the 2022 Electronic Materials Conference
扩大2022年电子材料会议参与范围
- 批准号:
2219635 - 财政年份:2022
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
- 批准号:
2119302 - 财政年份:2021
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Collaborative research: Mid-IR Photonic Funnels: Coupling, emitting, and re-shaping mid-IR photons in the nano-world
合作研究:中红外光子漏斗:在纳米世界中耦合、发射和重塑中红外光子
- 批准号:
2004422 - 财政年份:2020
- 资助金额:
$ 5.85万 - 项目类别:
Continuing Grant
All-Semiconductor Enhanced Efficiency Plasmonic Mid-IR Emitters
全半导体增强效率等离激元中红外发射器
- 批准号:
1926187 - 财政年份:2019
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Collaborative Research: Intersubband transitions and devices in non-polar strain-compensated InGaN/AlGaN
合作研究:非极性应变补偿 InGaN/AlGaN 中的子带间跃迁和器件
- 批准号:
1810318 - 财政年份:2018
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
CAREER: Mid-Infrared Quantum Dot Cascade Lasers
职业:中红外量子点级联激光器
- 批准号:
1711858 - 财政年份:2016
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Collaborative Research: Development of Optoelectronic Devices for the Far-Infrared
合作研究:远红外光电器件的开发
- 批准号:
1609912 - 财政年份:2016
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
- 批准号:
1313544 - 财政年份:2014
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
- 批准号:
1312421 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
- 批准号:
1312525 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
- 批准号:
1312697 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
- 批准号:
1312750 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
- 批准号:
1311849 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
- 批准号:
1312160 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
- 批准号:
239013293 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
- 批准号:
240640164 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Research Grants
Materials World Network: Nanostructured Materials for High-Efficiency Solar Energy Harvesting
材料世界网络:用于高效太阳能收集的纳米结构材料
- 批准号:
1311866 - 财政年份:2013
- 资助金额:
$ 5.85万 - 项目类别:
Standard Grant