NCS-FO: State Representations in Multi-purpose and Multi-region Neural Network Models of Cognition
NCS-FO:多用途和多区域认知神经网络模型中的状态表示
基本信息
- 批准号:1926800
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our understanding of the human brain has rapidly progressed with recent technological advances in both experimental neuroscience and artificial intelligence. Despite this, neither approach in isolation is able to explain how distinct cognitive functions such as learning, remembering, reasoning, and intuition emerge from processes inside the brain. In particular, we lack an understanding of how a relatively small and finite number of brain areas are used to accomplish this large and varied repertoire of cognitive functions. Bridging the fields of neuroscience and artificial intelligence, we seek to discover how the brain tracks the cognitive function that is currently engaged and switches between functions during ongoing behavior. We will apply new computational models, called "multi-purpose recurrent neural networks," to neural activity captured from the brains of different animal models to identify common mechanisms that allow animals to track and switch among cognitive functions. By bridging across experimental species, our findings will reveal fundamental features of brain processing. Further, our integrated approach, which uses a multi-disciplinary team of investigators and industry-academia partnerships, will promote cross-fertilization of knowledge and methods between artificial intelligence and neuroscience. We will also achieve broader societal benefits through collaboration with a graphic artist to develop graphic novel abstracts for widely comprehensible, visually appealing representations of the science for publication. A relatively small number of neural circuits in the brain are used to accomplish a large and varied repertoire of cognitive functions. Achieving this multi-purpose functionality requires neural circuits to both track the engaged function(s) and switch between them. How such tracking and switching is accomplished remains unclear. Computational models based on neural and behavioral data offer an opportunity to identify these key components of the brain's multipurpose functionality. However, existing models that simulate one task at a time lack the flexibility that underlies the brain's capacity to support many tasks. On the other hand, models that simulate multiple cognitive functions lack biologically realistic tracking and switching mechanisms. Here, we propose a new approach to this problem. We will develop a new class of data-inspired multi-purpose recurrent neural network (RNN) models that incorporate biologically plausible mechanisms to track the task being performed and the transitions between tasks. We will also analyze three distinct experimental datasets using machine learning to identify principles underlying multi-purpose functionality, particularly those that are conserved across species. Specifically, we will characterize multi-purpose functionality at the level of dynamic states. We define dynamic states as time-varying patterns of population activity that allow neural circuits to perform multiple tasks, engage them sequentially, and switch between them as task conditions or contexts change. We hypothesize that multi-purpose RNNs can incorporate dynamic states and simulate the brain's ability to track and switch between tasks, in a manner consistent with experimental data. First, we will develop and characterize data-inspired multi-purpose RNNs with internal state representations that track the engaged cognitive function/task performed. Second, we will incorporate functional and structural modularity into RNNs and analyze them in parallel with multi-region neural recordings. The resulting computational framework will enable us to identify key features of state representations and mechanisms underlying multi-purpose functionality in experimental data. What we discover will lay the foundation for understanding and testing core principles of how neural networks throughout the brain support diverse cognitive functions, enabling key advances in the study of cognition. Further, these robust, scalable multi-purpose RNN models containing internally represented states will better leverage existing large-scale neural data and galvanize new experiments designed to test model predictions. For instance, we expect to identify spatio-temporal markers from ongoing neural dynamics that predict upcoming behavioral transitions. In summary, we will build on recent advances in computer science, specifically, deep learning and other AI/ML-based techniques for neural networks, and bring them to bear on a key problem in neuroscience. Our integrative strategy maximally leverages the rapid pace of advances in computer science toward serving neuroscience and neuroengineering to catalyze new investigations beyond the confines of a lab.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着实验神经科学和人工智能领域的最新技术进步,我们对人脑的理解迅速进步。尽管如此,这两种孤立的方法都不能解释学习、记忆、推理和直觉等不同的认知功能是如何从大脑内部的过程中出现的。特别是,我们缺乏对相对较小和有限数量的大脑区域是如何用来完成这一庞大而多样的认知功能的理解。作为神经科学和人工智能领域的桥梁,我们试图发现大脑是如何跟踪目前正在进行的认知功能,以及在正在进行的行为中如何在不同功能之间切换的。我们将把新的计算模型,称为“多用途递归神经网络”,应用于从不同动物模型的大脑中捕捉到的神经活动,以确定允许动物跟踪认知功能并在认知功能之间切换的共同机制。通过跨越实验物种,我们的发现将揭示大脑处理的基本特征。此外,我们的综合方法使用了一个由多学科研究人员组成的团队和产业界与学术界的伙伴关系,将促进人工智能和神经科学之间的知识和方法的交叉培养。我们还将通过与一位图形艺术家合作开发图形小说摘要,为出版的科学提供广泛理解的、视觉上有吸引力的表现,从而获得更广泛的社会效益。大脑中数量相对较少的神经回路被用来完成大量不同的认知功能。要实现这一多功能功能,需要神经电路既跟踪参与的功能(S),又在它们之间切换。目前尚不清楚这种跟踪和切换是如何完成的。基于神经和行为数据的计算模型提供了识别大脑多用途功能的这些关键组成部分的机会。然而,现有的一次模拟一项任务的模型缺乏支撑大脑支持多项任务的能力的灵活性。另一方面,模拟多种认知功能的模型缺乏生物上真实的跟踪和切换机制。在这里,我们提出了一个新的方法来解决这个问题。我们将开发一类新的受数据启发的多用途递归神经网络(RNN)模型,该模型结合了生物学上可信的机制来跟踪正在执行的任务和任务之间的转换。我们还将使用机器学习分析三个不同的实验数据集,以确定多用途功能背后的原理,特别是那些跨物种保守的原理。具体地说,我们将在动态级别描述多用途功能。我们将动态定义为群体活动的时变模式,这种模式允许神经回路执行多项任务,按顺序进行,并随着任务条件或环境的变化而在它们之间切换。我们假设多用途RNN可以结合动态,并以与实验数据一致的方式模拟大脑跟踪任务和在任务之间切换的能力。首先,我们将开发和表征受数据启发的多用途RNN,它具有跟踪参与的认知功能/执行的任务的内部状态表示。其次,我们将把功能和结构的模块化融入到RNN中,并结合多区域神经记录对它们进行并行分析。由此产生的计算框架将使我们能够在实验数据中识别状态表示的关键特征和支持多用途功能的机制。我们的发现将为理解和测试大脑中的神经网络如何支持不同的认知功能的核心原则奠定基础,从而使认知研究取得关键进展。此外,这些包含内部表示状态的健壮、可扩展的多用途RNN模型将更好地利用现有的大规模神经数据,并激发旨在测试模型预测的新实验。例如,我们希望从正在进行的神经动力学中识别预测即将到来的行为转变的时空标记。总之,我们将以计算机科学的最新进展为基础,特别是深度学习和其他基于AI/ML的神经网络技术,并将它们应用于神经科学中的一个关键问题。我们的综合战略最大限度地利用计算机科学的快速发展步伐,为神经科学和神经工程服务,以催化超出实验室范围的新研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions
- DOI:10.1016/j.neuron.2019.08.025
- 发表时间:2019-11-20
- 期刊:
- 影响因子:16.2
- 作者:Pinto, Lucas;Rajan, Kanaka;Brody, Carlos D.
- 通讯作者:Brody, Carlos D.
Curriculum learning as a tool to uncover learning principles in the brain
课程学习作为揭示大脑学习原理的工具
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kepple, D.;Engelken, R.;Rajan, K
- 通讯作者:Rajan, K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kanaka Rajan其他文献
Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward anticipation
奖励预期过程中相互关联的皮质边缘结构中神经活动的时间特定模式
- DOI:
10.1101/2020.12.17.423162 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. E. Young;Camille A. Spencer;Clayton P. Mosher;Sarita Tamang;Kanaka Rajan;P. Rudebeck - 通讯作者:
P. Rudebeck
Nominally non-responsive frontal and sensory cortical cells encode task-relevant variables via ensemble consensus-building
名义上无反应的额叶和感觉皮层细胞通过整体共识构建来编码与任务相关的变量
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michele N. Insanally;Ioana Carcea;Rachel E. Field;Chris C. Rodgers;Brian DePasquale;Kanaka Rajan;M. DeWeese;B. Albanna;R. Froemke - 通讯作者:
R. Froemke
Inferring brain-wide interactions using data-constrained recurrent neural network models
使用数据约束的循环神经网络模型推断全脑交互
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Perich;Charlotte Arlt;Sofia Soares;M. E. Young;Clayton P. Mosher;Juri Minxha;Eugene Carter;Ueli Rutishauser;P. Rudebeck;C. Harvey;Kanaka Rajan - 通讯作者:
Kanaka Rajan
A ‘programming’ framework for recurrent neural networks
用于循环神经网络的“编程”框架
- DOI:
10.1038/s42256-023-00674-w - 发表时间:
2023-06-12 - 期刊:
- 影响因子:23.900
- 作者:
Manuel Beiran;Camille A. Spencer-Salmon;Kanaka Rajan - 通讯作者:
Kanaka Rajan
Rethinking brain-wide interactions through multi-region ‘network of networks’ models
通过多区域“网络的网络”模型重新思考全脑交互
- DOI:
10.31219/osf.io/58qwj - 发表时间:
2020 - 期刊:
- 影响因子:5.7
- 作者:
M. Perich;Kanaka Rajan - 通讯作者:
Kanaka Rajan
Kanaka Rajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kanaka Rajan', 18)}}的其他基金
CAREER: Untangling Inter-Area Communication in the Brain Using Multi-Region Neural Networks
职业:使用多区域神经网络理清大脑中的区域间通信
- 批准号:
2046583 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似国自然基金
影像分型预测HAIC-FO优势肝癌人群及影
像基因组学的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
ATP合酶Fo基团在酸性环境的生理活性及其作用机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
- 批准号:82304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
- 批准号:32202832
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
GRACE-FO微波测距系统原始数据处理、噪声分析与评估
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
利用GRACE-FO和中国重力卫星协同探测时变重力场和质量分布变化
- 批准号:42061134010
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
联合GRACE/GRACE-FO和GNSS形变数据反演连续精细的区域地表质量变化
- 批准号:41974015
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
複数のFoトルク発生ユニットを持つATP合成酵素の創出
使用多个 Fo 扭矩产生单元创建 ATP 合酶
- 批准号:
24K01987 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NCS-FO: Understanding the computations the brain performs during choice
NCS-FO:了解大脑在选择过程中执行的计算
- 批准号:
2319580 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NCS-FO: Uncovering Dynamics of Neural Activity of Subjective Estimation of Time
NCS-FO:揭示主观时间估计的神经活动动态
- 批准号:
2319518 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
- 批准号:
2350329 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NCS-FO: Functional and neural mechanisms of integrating multiple artificial somatosensory feedback signals in prosthesis control
NCS-FO:在假肢控制中集成多个人工体感反馈信号的功能和神经机制
- 批准号:
2327217 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant