NCS-FO: Collaborative Research: Analysis, prediction, and control of synchronized neural activity

NCS-FO:协作研究:同步神经活动的分析、预测和控制

基本信息

  • 批准号:
    1926829
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Understanding the relations between the anatomical structure of the human brain and its functions in healthy and diseased states can not only lead to the design of novel, targeted, non-invasive, and highly-effective treatments for neurological disorders, but also inform the application of innovative stimulation schemes to enhance cognitive performance and executive capabilities. Leveraging data obtained with state-of-the-art sensing and imaging technologies, this project pursues these objectives by innovatively studying the human brain as a dynamic network system comprising neuronal ensembles and white-matter fibers, and as governed by principles similar to social and technological cyber-physical networks. This project develops and validates new rigorous theories and tools to address an outstanding problem in network neuroscience. Namely, to leverage the brain anatomical structure to characterize, predict, and control patterns of synchronized neural activity, and to validate the methods with realistic brain data. This project will not only contribute to the theories of networks, controls, and neuroscience, but also to their integration, by leveraging different levels of abstraction (brain representations from diffusion imaging data, electrocorticography time series, mathematical models) and distinct disciplinary approaches. In addition to new methods to study synchronized activity in the brain and inform the next generation of diagnostics, this project pursues far-reaching teaching and outreach activities, including (i) a number of university-level initiatives at the graduate and undergraduate levels, (ii) outreach activities that will engage young people from the local communities in Philadelphia and Riverside, and (iii) dissemination activities that will bring together traditionally separated communities and promote multi-disciplinary initiatives to tackle some of the most pressing problems in neuroscience.The central hypothesis of this project is that the interconnected structure of the brain determines its performance and controls its transitions between healthy and diseased states. Building on this hypothesis, this project addresses the unsolved problems of characterizing, predicting, and controlling patterns of synchronized neural activity in the human brain from sparse and coarse temporal measurements and interventions. Additionally, to support the hypothesis and validate the theories of neural synchronization, the project leverages three unique and extensive multimodal neuroimaging datasets combining high-resolution electrocorticography and diffusion imaging that will allow to assess the relations between synchronization patterns and underlying structural network architecture. Specifically, this project is organized around two main tasks. Task 1, abstracts the problem of controlling patterns of neural activity as the problem of controlling the degree of synchronization among interconnected nonlinear oscillators, where oscillators represent brain regions and their interconnections reflect the anatomy of the human brain as reconstructed by diffusion magnetic resonance imaging. The idea is put forth that altered synchronization patterns are the results of, possibly small, modifications to the oscillators' interconnection structure and weights, and that desirable patterns can be restored by minimal and localized structural interventions. Task 2 uses empirical data to obtain inferences complementing those acquired in the formal theoretical and modeling work in Task 1. Because the focus here is the analysis, prediction, and control of cluster synchronization, the empirical efforts remain constrained to the study of functional neuroimaging data with clear electrographic signatures of synchronization. Specifically, the project uses electrocorticography data, which boasts markedly greater temporal resolution than functional magnetic resonance imaging and does not suffer from the issues of volume conduction that are more common in electroencephalography and magnetoencephalography. The project blends and extends tools from control and network theories, dynamical systems, data analysis, and network neuroscience. While this project focuses on synchronization problems in neural activity, the methods have broad applicability in engineering, for instance to design optimized networks and sparse controllers, network neuroscience, and network science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解人脑的解剖结构与其在健康和疾病状态下的功能之间的关系,不仅可以指导设计新的、有针对性的、非侵入性的、高效的神经疾病治疗方法,而且还可以为应用创新的刺激方案来提高认知能力和执行能力提供信息。利用最先进的传感和成像技术获得的数据,该项目通过创新性地将人脑作为一个由神经元集合和白质纤维组成的动态网络系统来实现这些目标,并遵循类似于社会和技术网络-物理网络的原理。这个项目开发和验证了新的严谨的理论和工具,以解决网络神经科学中的一个突出问题。也就是说,利用大脑的解剖结构来表征、预测和控制同步神经活动的模式,并用真实的大脑数据来验证方法。这个项目不仅将有助于网络、控制和神经科学的理论,还将通过利用不同级别的抽象(来自扩散成像数据的大脑表示、皮层脑电时间序列、数学模型)和不同的学科方法来促进它们的整合。除了研究大脑同步活动和向下一代诊断提供信息的新方法外,该项目还开展了影响深远的教学和推广活动,包括(I)研究生和本科生层面的一些大学层面的倡议,(Ii)将吸引费城和河滨当地社区的年轻人参与的扩展活动,以及(Iii)将传统上分离的社区聚集在一起并促进多学科倡议的传播活动,以解决神经科学中一些最紧迫的问题。该项目的中心假设是,大脑的相互联系的结构决定其表现,并控制其在健康和疾病状态之间的转换。在这一假设的基础上,该项目解决了尚未解决的问题,即通过稀疏和粗略的时间测量和干预来表征、预测和控制人脑中同步神经活动的模式。此外,为了支持这一假设并验证神经同步理论,该项目利用了三个独特的、广泛的多模式神经成像数据集,将高分辨率皮层脑电成像和扩散成像结合在一起,将允许评估同步模式和底层结构网络结构之间的关系。具体地说,这个项目围绕两个主要任务进行组织。任务1将控制神经活动模式的问题抽象为控制相互连接的非线性振荡器之间的同步度的问题,其中振荡器代表大脑区域,它们的相互连接反映了通过扩散磁共振成像重建的人脑的解剖结构。提出的想法是,改变的同步模式是对振荡器的互连结构和权重的可能很小的修改的结果,并且可以通过最小和局部的结构干预来恢复所需的模式。任务2使用经验数据来获得补充在任务1的正式理论和建模工作中获得的推论。由于这里的重点是簇同步的分析、预测和控制,因此经验努力仍然局限于对具有明显同步电信号的功能神经成像数据的研究。具体地说,该项目使用的是皮层脑电数据,它的时间分辨率明显高于功能磁共振成像,而且不存在脑电和脑磁图中更常见的体积传导问题。该项目融合和扩展了控制和网络理论、动力系统、数据分析和网络神经科学的工具。虽然这个项目专注于神经活动中的同步问题,但这些方法在工程上具有广泛的适用性,例如设计优化的网络和稀疏控制器、网络神经科学和网络科学。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy.
  • DOI:
    10.1126/sciadv.abn2293
  • 发表时间:
    2022-11-11
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
  • 通讯作者:
Conditions for Feedback Linearization of Network Systems
  • DOI:
    10.1109/lcsys.2020.2981339
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Menara, Tommaso;Baggio, Giacomo;Pasqualetti, Fabio
  • 通讯作者:
    Pasqualetti, Fabio
Mediated Remote Synchronization of Kuramoto-Sakaguchi Oscillators: The Number of Mediators Matters
Kuramoto-Sakaguchi 振荡器的介导远程同步:介体的数量很重要
  • DOI:
    10.1109/lcsys.2020.3005449
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Qin, Yuzhen;Cao, Ming;Anderson, Brian D.;Bassett, Danielle S.;Pasqualetti, Fabio
  • 通讯作者:
    Pasqualetti, Fabio
Phase-amplitude coupling in neuronal oscillator networks
神经元振荡器网络中的相位幅度耦合
  • DOI:
    10.1103/physrevresearch.3.023218
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Qin, Yuzhen;Menara, Tommaso;Bassett, Danielle S.;Pasqualetti, Fabio
  • 通讯作者:
    Pasqualetti, Fabio
Time-Inverted Kuramoto Dynamics for κ-Clustered Circle Coverage
用于 π 簇圆覆盖的时间反演 Kuramoto 动力学
  • DOI:
    10.1109/cdc45484.2021.9683310
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boldrer, Manuel;Riz, Francesco;Pasqualetti, Fabio;Palopoli, Luigi;Fontanelli, Daniele
  • 通讯作者:
    Fontanelli, Daniele
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fabio Pasqualetti其他文献

Continuous graph partitioning for camera network surveillance
  • DOI:
    10.1016/j.automatica.2014.11.017
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Domenica Borra;Fabio Pasqualetti;Francesco Bullo
  • 通讯作者:
    Francesco Bullo
On a security vs privacy trade-off in interconnected dynamical systems
  • DOI:
    10.1016/j.automatica.2020.109426
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vaibhav Katewa;Rajasekhar Anguluri;Fabio Pasqualetti
  • 通讯作者:
    Fabio Pasqualetti
Noise in the reverse process improves the approximation capabilities of diffusion models
逆向过程中的噪声提高了扩散模型的逼近能力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karthik Elamvazhuthi;Samet Oymak;Fabio Pasqualetti
  • 通讯作者:
    Fabio Pasqualetti
A network control theory pipeline for studying the dynamics of the structural connectome
用于研究结构连接组动态的网络控制理论管道
  • DOI:
    10.1038/s41596-024-01023-w
  • 发表时间:
    2024-07-29
  • 期刊:
  • 影响因子:
    16.000
  • 作者:
    Linden Parkes;Jason Z. Kim;Jennifer Stiso;Julia K. Brynildsen;Matthew Cieslak;Sydney Covitz;Raquel E. Gur;Ruben C. Gur;Fabio Pasqualetti;Russell T. Shinohara;Dale Zhou;Theodore D. Satterthwaite;Dani S. Bassett
  • 通讯作者:
    Dani S. Bassett
Denoising Diffusion-Based Control of Nonlinear Systems
非线性系统的基于去噪扩散的控制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karthik Elamvazhuthi;D. Gadginmath;Fabio Pasqualetti
  • 通讯作者:
    Fabio Pasqualetti

Fabio Pasqualetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fabio Pasqualetti', 18)}}的其他基金

Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
  • 批准号:
    2308639
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: A Mechanistic Model of Cognitive Control
NCS-FO:协作研究:认知控制的机制模型
  • 批准号:
    1631112
  • 财政年份:
    2016
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CRCNS: Collaborative Research: Mapping and Control of Large-Scale Neural Dynamics
CRCNS:协作研究:大规模神经动力学的映射和控制
  • 批准号:
    1430279
  • 财政年份:
    2014
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Control-Theoretic Defense Strategies for Cyber-Physical Systems
网络物理系统的控制理论防御策略
  • 批准号:
    1405330
  • 财政年份:
    2014
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant

相似国自然基金

影像分型预测HAIC-FO优势肝癌人群及影 像基因组学的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ATP合酶Fo基团在酸性环境的生理活性及其作用机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
  • 批准号:
    82304035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
  • 批准号:
    32202832
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
GRACE-FO微波测距系统原始数据处理、噪声分析与评估
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
利用GRACE-FO和中国重力卫星协同探测时变重力场和质量分布变化
  • 批准号:
    42061134010
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
联合GRACE/GRACE-FO和GNSS形变数据反演连续精细的区域地表质量变化
  • 批准号:
    41974015
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319406
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319450
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319451
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
  • 批准号:
    2319449
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
  • 批准号:
    2350329
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
  • 批准号:
    2319405
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: Computational Analysis of Synaptic Nanodomains
NCS-FO:协作研究:突触纳米域的计算分析
  • 批准号:
    2219894
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
  • 批准号:
    2219876
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: A model-based approach to probe the role of spontaneous movements during decision-making
合作研究:NCS-FO:一种基于模型的方法,探讨自发运动在决策过程中的作用
  • 批准号:
    2219946
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
NCS-FO: Collaborative Research: Computational Analysis of Synaptic Nanodomains
NCS-FO:协作研究:突触纳米域的计算分析
  • 批准号:
    2219979
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了