Computational Galois Theory for Local Fields
局部域的计算伽罗瓦理论
基本信息
- 批准号:239392052
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Galois groups are fundamental mathematical objects, which provide information about the solvability of polynomials by radicals. The applicant has gained respectable progress in computing intermediate fields and Galois groups over rational numbers in the past few years. While the recent implementations provides computations of Galois groups for polynomials up to high double-digit degree, these computations are difficult to perform efficiently, and it is unknown if these algorithms can have polynomial time complexity. For the computation of intermediate fields, the applicant developed a new algorithm, which de-livers a system of generating subfields in polynomial complexity. Then any arbitrary subfield can be described as a suitable intersection of the generating subfields. Furthermore, the running time for computing all subfields is proportional to the number of subfields. For this project at hand, we aim to develop and implement nontrivial algorithms for the computation of subfields and Galois groups over local fields, i.e. over p-adic fields and local function fields. It is fair to hope that these algorithms provide improvements and better understanding for the respective algorithms over global fields. This project requires a very detailed investigation of the local fields' structure, and a fine intuition for retrieving effectiveness for computation over local fields. This yields a nice interaction of theory and computer algebra applications. The computation of intermediate fields leads back to factorisation of polynomials and solutions of linear systems of equations. Hereby, recent implementations of factorisation algorithms over local fields only provide approximations, and as these are the input of the linear system of equations, we have to consider precision problems like in numerical analysis. The main problem for the computation of Galois groups over local fields is that we do not have easy access to the zeros and their approximations, which does not allow the transformation of known algorithms for global fields. We would like to attack the computation of Galois group via the knowledge of the absolute Galois group and local class field theory. The applicant administrates a database for number fields filled with over 2 million polynomials. This database shall be extended and be expanded by local function fields with small characteristic. These data are very important to find and understand interesting examples for conjectures within geometry and number theory. Furthermore, big tables are useful to make and test conjectures about the asymptotics of such objects.
伽罗瓦群是基本的数学对象,它提供了关于多项式通过根式可解性的信息。在过去的几年里,申请人在计算有理数上的中间域和伽罗瓦群方面取得了可观的进展。虽然最近的实现提供了高达高两位数阶的多项式的伽罗瓦群的计算,但是这些计算难以有效地执行,并且不知道这些算法是否可以具有多项式时间复杂度。对于中间场的计算,申请人开发了一种新算法,该算法提供了以多项式复杂度生成子域的系统。然后,任何任意子场都可以被描述为生成子场的适当交集。此外,计算所有子场的运行时间与子场的数量成比例。对于手头的这个项目,我们的目标是开发和实现非平凡的算法,用于计算局部域上的子域和伽罗瓦群,即p-adic域和局部函数域。这是公平的希望,这些算法提供了改进和更好地理解各自的算法在全球领域。这个项目需要一个非常详细的调查,当地的字段的结构,并检索有效性的计算在当地字段的一个良好的直觉。这产生了一个很好的理论和计算机代数应用的互动。计算中间领域导致回到因式分解的多项式和解决方案的线性方程组。因此,最近在局部域上实现的因式分解算法只提供近似值,并且由于这些是线性方程组的输入,因此我们必须考虑数值分析中的精度问题。局部域上的伽罗瓦群的计算的主要问题是我们不容易获得零点及其近似,这不允许对全局域的已知算法进行变换。我们希望通过绝对伽罗瓦群和局部类域理论的知识来攻击伽罗瓦群的计算。申请人管理一个数据库,用于填写超过200万个多项式的数字字段。该数据库应通过局部功能字段进行扩展,并具有较小的特征。这些数据对于发现和理解几何和数论中的几何图形的有趣例子非常重要。此外,大表格对于制作和检验关于此类对象的渐近性的图表是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jürgen Klüners其他文献
Professor Dr. Jürgen Klüners的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jürgen Klüners', 18)}}的其他基金
Asymptotics of wildly ramified Galois extensions of local or global function fields
局部或全局函数域的疯狂分支伽罗瓦扩展的渐近
- 批准号:
171354361 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Explizite Methoden in der Galoistheorie
伽罗瓦理论中的显式方法
- 批准号:
99695663 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
1. Heuristiken für die Asymptotik von Zahlkörpern 2. Die Cohen-Lenstra-Heuristik und die Asymptotik-Vermutung nilpotenter Gruppen 3. Asymptotik von Funktionskörpern mit vorgegebener Galoisgruppe 4. Berechnung von Galoisgruppen
1. 数域渐近的启发式 2. Cohen-Lenstra 启发式和幂零群的渐近猜想 3. 给定 Galois 群的函数域的渐近 4. Galois 群的计算
- 批准号:
25046656 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
相似国自然基金
Hopf-Galois代数及其附加结构的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线性码的广义pair重量、Galois对偶及相关问题研究
- 批准号:12271199
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
用代数方法研究Galois自对偶码的构造和表示问题
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
Theta对应与Galois周期
- 批准号:11971223
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
乘子余群胚理论和代数量子群胚的双Galois理论及交叉Yetter-Drinfeld-模范畴
- 批准号:11871144
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
非线性动力系统的Galois方法
- 批准号:11771177
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
差分Galois理论中的算法及其应用
- 批准号:11771433
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
Monoidal Hom-Hopf Galois扩张下的自同态Hom-代数的结构和扩张研究
- 批准号:11601203
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
模形式Galois表示的计算及其应用
- 批准号:11601153
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
代数方程之Galois理论的若干历史问题研究
- 批准号:11571276
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2302394 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Galois module theory for curves over finite fields
有限域上曲线的伽罗瓦模理论
- 批准号:
2751003 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
- 批准号:
2201005 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
- 批准号:
577144-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Weak skew left braces, Hopf-Galois theory, and the Yang-Baxter equation
弱斜左括号、Hopf-Galois 理论和 Yang-Baxter 方程
- 批准号:
EP/W012154/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Galois Representations: Deformation Theory and Motivic Origins
职业:伽罗瓦表示:变形理论和动机起源
- 批准号:
2120325 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
SaTC: CORE: Small: Applications of Galois Theory to the Search for Non-Linear Functions
SaTC:核心:小:伽罗瓦理论在搜索非线性函数中的应用
- 批准号:
2127742 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Hopf-Galois Theory and Skew Braces
Hopf-Galois 理论和斜括号
- 批准号:
EP/V005995/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Galois Actions on Fundamental Groups and Number Theory
基本群和数论的伽罗瓦行动
- 批准号:
20J11018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows