I-Corps: Data Completeness and Inconsistency Analysis Platform
I-Corps:数据完整性和不一致分析平台
基本信息
- 批准号:1928279
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This I-Corps project will impact a range of healthcare industry jobs, increasing financial efficiency and reduce data-driven misdiagnosis and mistreatment. Healthcare patient outcomes and experiences will improve with reductions in medication errors, misdiagnosis, and other inaccuracies that can cause harm to patients and create liability issues with healthcare providers. Processes associated with acquiring electronic health data are often function slowly, incompletely, and often without the full consent of the patient or adequate metadata to track critical information required for treating a patient. The solution developed here can potentially enable proper data correctness and address inconsistencies which can lead to better patient outcomes and improve legal liability framework.This I-Corps project provides intellectual merits that will improve the healthcare information industry. This includes synthesis of mathematical models and algorithms that analyze data completeness and consistency. Specifically, this will lead to a hybrid machine learning approach that will utilize unsupervised learning to automatically classify various electronic health records as complete or incomplete, and supervised learning to confirm such classification and further grade the likelihood that the entered data is accurate and correct. Furthermore, this will also lead to evolutions in applications of reinforcement learning supporting greater accuracy, and anomaly detection. Overall, this project will lead to improving the quality of healthcare delivery and innovations in supporting evolutions in data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目将影响一系列医疗保健行业的工作,提高财务效率,减少数据驱动的误诊和误治。 医疗保健患者的结果和体验将随着用药错误、误诊和其他可能对患者造成伤害并造成医疗保健提供者责任问题的不准确性的减少而改善。 与获取电子健康数据相关联的过程通常运行缓慢、不完全,并且通常没有患者的完全同意或足够的元数据来跟踪治疗患者所需的关键信息。 这里开发的解决方案可以潜在地实现适当的数据正确性和解决不一致性,这可以导致更好的患者结果和改善法律的责任框架。这个I-Corps项目提供了智力优势,将改善医疗保健信息行业。这包括分析数据完整性和一致性的数学模型和算法的综合。具体来说,这将导致一种混合机器学习方法,该方法将利用无监督学习来自动将各种电子健康记录分类为完整或不完整,并利用监督学习来确认这种分类,并进一步对输入数据准确和正确的可能性进行分级。 此外,这也将导致强化学习应用的发展,支持更高的准确性和异常检测。总体而言,该项目将提高医疗服务的质量,并在支持数据科学发展方面进行创新。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Varadraj Gurupur其他文献
Varadraj Gurupur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Seamless integration of Financial data into ESG data
将财务数据无缝集成到 ESG 数据中
- 批准号:
10099890 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Patient Lifestyle and Disease Data Interactium (PaLaDIn)
患者生活方式和疾病数据交互 (PaLaDIn)
- 批准号:
10103989 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Patient Lifestyle and Disease Data Interactium (PaLaDIn)
患者生活方式和疾病数据交互 (PaLaDIn)
- 批准号:
10105921 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
EU-Funded
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
SME Support
NEMO - Net zero events using multiple open data sources
NEMO - 使用多个开放数据源的净零事件
- 批准号:
10114096 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
SME Support
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
SME Support
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Feasibility Studies
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
- 批准号:
DP240102399 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects