Semistable resolutions of local models

局部模型的半稳定分辨率

基本信息

项目摘要

The goal of this project is the investigation of a topic in arithmetic algebraic geometry by algorithmic and experimental methods. Local models describe the étale-local structure of integral models of certain Shimura varieties, and therefore, as well as for other reasons, are of great interest in arithmetic geometry. However, in general their singularities are so complicated that it would be desirable to pass to a model with less severe singularities, in the best case to a semistable model. In general it is not known whether such a model exists. This is what we will investigate by explicit computations. In cases of “small rank” computations (by the principal investigator, among others) have shown that a semistable resolution exists. In the general case there are candidates for semistable resolutions, for example by Genestier and Faltings, but so far (without using computers) their semistability could not be proved. In addition, this and similar questions can also be investigated for other classes of schemes, for instance for certain degenerations of quiver Grassmannians.
这个项目的目标是用算法和实验的方法来研究算术代数几何中的一个主题。局部模型描述了某些志村类型的积分模型的<s:1> -局部结构,因此,以及其他原因,在算术几何中引起了极大的兴趣。然而,一般来说,它们的奇点是如此复杂,以至于最好将其传递给具有不太严重奇点的模型,在最好的情况下传递给半稳定模型。一般来说,这种模式是否存在是未知的。这就是我们将通过显式计算来研究的。在“小秩”计算的情况下(由主要研究者和其他人)已经表明存在半稳定分辨率。在一般情况下,有半稳定分辨率的候选,例如Genestier和Faltings,但到目前为止(没有使用计算机)它们的半稳定性无法证明。此外,这个问题和类似的问题也可以研究其他类型的方案,例如颤栗格拉斯曼的某些退化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ulrich Görtz其他文献

Professor Dr. Ulrich Görtz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Ulrich Görtz', 18)}}的其他基金

Geometry of Deligne-Lusztig varieties
Deligne-Lusztig 品种的几何形状
  • 批准号:
    171349465
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Affine Deligne-Lusztig-Varietäten
Affine Deligne-Lusztig 品种
  • 批准号:
    50602606
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Geometrie und Arithmetik der Reduktion von PEL-Shimura-Varietäten mit parahorischer Niveaustruktur
旁层能级结构PEL-Shimura簇约简的几何与算法
  • 批准号:
    5266897
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

Free Resolutions
免费决议
  • 批准号:
    2401238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Exploring Frontiers on applying CubeSat images with very high spatial and temporal resolutions to remotely estimate species-level tree phenology
探索应用具有极高空间和时间分辨率的 CubeSat 图像远程估计物种级树木物候的前沿
  • 批准号:
    23K18517
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Phenomenological inspection of string landscape based on resolutions of singularities
基于奇点解析的弦景观现象学检验
  • 批准号:
    22KJ1426
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
  • 批准号:
    RGPIN-2020-04230
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A graph framework for modelling, analysing, and visualising big geospatial networks at varying spatial resolutions
用于以不同空间分辨率对大型地理空间网络进行建模、分析和可视化的图形框架
  • 批准号:
    547701-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Diagnostics development of ionization states in intense-laser irradiated matter with high spatio-temporal resolutions
高时空分辨率强激光照射物质电离态的诊断进展
  • 批准号:
    22K03571
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite Group Actions on Free Resolutions
自由解的有限群动​​作
  • 批准号:
    2200844
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Balance of Power: Analysis of Interstate Wars and Peaceful Resolutions of Conflict, 1000-2000 AD
权力平衡:对公元 1000-2000 年国家间战争与和平解决冲突的分析
  • 批准号:
    22K01533
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A graph framework for modelling, analysing, and visualising big geospatial networks at varying spatial resolutions
用于以不同空间分辨率对大型地理空间网络进行建模、分析和可视化的图形框架
  • 批准号:
    547701-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigations in Combinatorial and Topological Resolutions
组合和拓扑解析的研究
  • 批准号:
    564650-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了