RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.

RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。

基本信息

  • 批准号:
    1929172
  • 负责人:
  • 金额:
    $ 14.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The 3D printing of metal parts promises to transform U.S. manufacturing. For example, metal additive manufacturing (AM) has the potential to reduce time-to-market for a new jet engine from five years to one year, while simultaneously increasing fuel efficiency and power by 10%. Poor consistency in part quality, however, limits the use of AM. As a result, safety-conscious industries (e.g., aerospace and biomedical fields) are reluctant to use AM processes to make mission-critical parts. The root cause for flaw formation in metal AM is the uneven temperature distribution inside the part during printing. To ensure a steady temperature distribution inside the part, practitioners currently use trial-and-error studies that require experimenting with different process settings and part designs – an expensive and time-consuming approach. A more efficient solution involves encapsulating the fundamental thermal physics of the printing process using computer simulation models. These simulation models can be used to identify and correct problems that can lead to an uneven temperature distribution in the part before it is built. The PI has advanced a new mathematical approach to predict the temperature distribution in AM parts that takes less than one-tenth of the time required by existing techniques and has an error of less than 10%. Rigorous validation of this concept with experimental data is the next step to scale this new concept to practice. The objective of this fellowship is to test the hypothesis that the instantaneous spatiotemporal distribution of temperature generated in a metal AM part as it is being deposited layer-upon-layer is predicted by invoking the novel theory of heat dissipation on planar graphs (spectral graph theory) with an accuracy comparable to existing finite element techniques but within a fraction of the computation time (less than 1/10th). To realize this objective, this fellowship provides the PI access to the Open Architecture Laser Powder Bed Fusion metal AM system at the Edison Welding Institute (EWI). This system has eight different sensors and allows the in-situ measurement of thermal signatures at scales ranging from 5 micrometer to 400 micrometers. Access to this unique apparatus will allow the PI to measure the instantaneous temperature distribution in a part and track changes in its shape with unprecedented precision. Using data obtained from experiments on the open architecture metal AM system at EWI, the PI will: (1) explain and an quantify the causal factors governing the temperature distribution in metal AM parts and link it to part quality; (2) achieve near real-time prediction of the temperature distribution, which will significantly reduce the experimental tests needed to optimize the part geometry and process parameters; and (3) establish the digital twin concept for qualification of metal AM parts by augmenting in-situ sensor data with physical process models. This work will result in experimentally validated, physics-based tools to aid rapid optimization of process settings and part geometry, which in turn will shorten time-to-market for AM parts and reduce scrap rates by up to 80%.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属零件的3D打印有望改变美国制造业。例如,金属增材制造(AM)有可能将新喷气发动机的上市时间从五年缩短到一年,同时将燃油效率和功率提高10%。然而,零件质量的一致性差限制了AM的使用。因此,具有安全意识的行业(例如,航空航天和生物医学领域)不愿意使用AM工艺来制造关键任务部件。金属增材制造中形成缺陷的根本原因是打印过程中部件内部的温度分布不均匀。为了确保零件内部稳定的温度分布,从业人员目前使用试错法研究,需要对不同的工艺设置和零件设计进行试验-这是一种昂贵且耗时的方法。更有效的解决方案涉及使用计算机模拟模型封装印刷过程的基本热物理。这些仿真模型可用于识别和纠正可能导致部件温度分布不均匀的问题。PI提出了一种新的数学方法来预测AM部件的温度分布,所需时间不到现有技术的十分之一,误差小于10%。 用实验数据对这一概念进行严格验证是将这一新概念应用于实践的下一步。该奖学金的目的是测试的假设,即在金属AM部分产生的温度的瞬时时空分布,因为它是沉积层上层的预测调用平面图(谱图理论)的散热的新理论与现有的有限元技术的精度相当,但在一小部分的计算时间(小于1/10)。为了实现这一目标,该奖学金提供PI访问爱迪生焊接研究所(EWI)的开放式结构激光粉末床熔融金属AM系统。该系统有八个不同的传感器,可以在5微米至400微米的尺度上现场测量热特征。使用这种独特的设备将使PI能够测量零件中的瞬时温度分布,并以前所未有的精度跟踪其形状变化。利用EWI开放式金属增材制造系统的实验数据,PI将:(1)解释和量化金属增材制造零件中温度分布的因果因素,并将其与零件质量联系起来;(2)实现温度分布的近实时预测,这将大大减少优化零件几何形状和工艺参数所需的实验测试;(3)通过增加现场传感器数据和物理过程模型,建立了金属增材制造零件质量评定的数字孪生概念。 这项工作将产生经过实验验证的、基于物理的工具,以帮助快速优化工艺设置和零件几何形状,从而缩短增材制造零件的上市时间,并将废品率降低高达80%。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel
  • DOI:
    10.1016/j.addma.2021.102585
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    11
  • 作者:
    A. Ramalho;T. Santos;Ben Bevans;Z. Smoqi;Prahalada K. Rao;J. P. Oliveira
  • 通讯作者:
    A. Ramalho;T. Santos;Ben Bevans;Z. Smoqi;Prahalada K. Rao;J. P. Oliveira
Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of thermal history on porosity, microstructure evolution, and recoater crash
  • DOI:
    10.1016/j.matdes.2021.109685
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    R. Yavari;Z. Smoqi;A. Riensche;Ben Bevans;Humaun Kobir;H. Mendoza;Hyeyun Song;K. Cole;Prahalada K. Rao
  • 通讯作者:
    R. Yavari;Z. Smoqi;A. Riensche;Ben Bevans;Humaun Kobir;H. Mendoza;Hyeyun Song;K. Cole;Prahalada K. Rao
Thermal modeling of directed energy deposition additive manufacturing using graph theory
使用图论进行定向能量沉积增材制造的热建模
  • DOI:
    10.1108/rpj-07-2021-0184
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Riensche, Alex;Severson, Jordan;Yavari, Reza;Piercy, Nicholas L.;Cole, Kevin D.;Rao, Prahalada
  • 通讯作者:
    Rao, Prahalada
Prediction of recoater crash in laser powder bed fusion additive manufacturing using graph theory thermomechanical modeling
  • DOI:
    10.1007/s40964-022-00331-5
  • 发表时间:
    2022-08-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobir, Md Humaun;Yavari, Reza;Rao, Prahalada
  • 通讯作者:
    Rao, Prahalada
Feedforward control of thermal history in laser powder bed fusion: Toward physics-based optimization of processing parameters
激光粉末床熔合热历史的前馈控制:基于物理的加工参数优化
  • DOI:
    10.1016/j.matdes.2022.111351
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Riensche, Alex;Bevans, Benjamin D.;Smoqi, Ziyad;Yavari, Reza;Krishnan, Ajay;Gilligan, Josie;Piercy, Nicholas;Cole, Kevin;Rao, Prahalada
  • 通讯作者:
    Rao, Prahalada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prahalada Rao其他文献

Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao
  • 通讯作者:
    Prahalada Rao
A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing
增材制造中过程-结构-性能建模的物理信息机器学习综述
  • DOI:
    10.1016/j.jmapro.2024.11.066
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Meysam Faegh;Suyog Ghungrad;João Pedro Oliveira;Prahalada Rao;Azadeh Haghighi
  • 通讯作者:
    Azadeh Haghighi
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
Predicting meltpool depth and primary dendritic arm spacing in laser powder bed fusion additive manufacturing using physics-based machine learning
使用基于物理的机器学习预测激光粉末床融合增材制造中的熔池深度和一次枝晶臂间距
  • DOI:
    10.1016/j.matdes.2023.112540
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Alex R. Riensche;Benjamin D. Bevans;Grant King;Ajay Krishnan;Kevin D. Cole;Prahalada Rao
  • 通讯作者:
    Prahalada Rao

Prahalada Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prahalada Rao', 18)}}的其他基金

PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2322322
  • 财政年份:
    2023
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2044710
  • 财政年份:
    2021
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    1752069
  • 财政年份:
    2018
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
  • 批准号:
    1739696
  • 财政年份:
    2017
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1719388
  • 财政年份:
    2016
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1538059
  • 财政年份:
    2015
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Understanding Wildfire Risks to Drinking Water Source Waters: Pyrogenic Changes to Organic Matter and Disinfection By-product Formation
RII Track-4:NSF:了解饮用水源水域的野火风险:有机物的热原变化和消毒副产品的形成
  • 批准号:
    2229313
  • 财政年份:
    2023
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Understanding the Nanoscale Incommensurate Modulated Structure in the Titanium Alloys
RII Track-4:NSF:了解钛合金中的纳米级不相称调制结构
  • 批准号:
    2229724
  • 财政年份:
    2023
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Understanding Microstructure Evolution in Stimuli-Responsive Yield-Stress Fluid-Assisted 3D Printing: Linking Microstructures to Macroscale Rheological Properties
RII Track-4:NSF:了解刺激响应屈服应力流体辅助 3D 打印中的微观结构演化:将微观结构与宏观流变特性联系起来
  • 批准号:
    2229004
  • 财政年份:
    2023
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Understanding the role of surface interactions in co-assembly of spherical and rod-shaped colloids
RII Track-4:NSF:了解表面相互作用在球形和棒状胶体共组装中的作用
  • 批准号:
    2132116
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Atomic-Scale Understanding of the Self-Healing Mechanisms of Ionic Polymers
RII Track-4:NSF:离子聚合物自我修复机制的原子尺度理解
  • 批准号:
    2132055
  • 财政年份:
    2022
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4: Improving Understanding of River Flood Dynamics by Relating Flow and Sediment Movement to Shapes of River Dunes in three dimensions
RII Track-4:通过将流量和泥沙运动与三个维度的河流沙丘形状联系起来,增进对河流洪水动力学的理解
  • 批准号:
    2032910
  • 财政年份:
    2021
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4: Understanding Reaction-Transport Coupling in High-Temperature Thermochemical Energy Storage Systems
RII Track-4:了解高温热化学储能系统中的反应-输运耦合
  • 批准号:
    2031701
  • 财政年份:
    2021
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
RII Track-4: Understanding Phase-Change Nanodevices for Cognitive-inspired Computing Applications.
RII Track-4:了解用于认知启发计算应用的相变纳米器件。
  • 批准号:
    2033328
  • 财政年份:
    2021
  • 资助金额:
    $ 14.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了