Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function

生物传感器数据融合实时监测整体神经生理功能

基本信息

  • 批准号:
    1719388
  • 负责人:
  • 金额:
    $ 21.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-21 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Real-time detection of acute changes in neurophysiological state, such as epileptic seizures, lapses in cognitive ability, acute stress, etc., can ultimately serve to prevent accidents in high-risk occupations that require unwavering focus. Such professions include hazardous cargo trucking, heavy machinery operation, security and defense, air traffic control, etc. Indeed, technology for acquiring rich biosensor data streams that capture brain function, e.g., electroencephalography, are becoming increasingly portable and noninvasive. These developments present an opportunity for implementing not only real-time monitoring, but also providing pre-emptive alerts (e.g., smart phone displays), which can be used to indicate degradation in physiological states. This research has direct applications in biomedical settings - for instance, epilepsy, is one of the most common neurological disorders afflicting over 50 million people worldwide, including 3 million people in the U.S. In about 25 percent of these patients, epileptic seizures are not controlled using available medications. Being able to detect (or predict) the onset of epileptic seizures would significantly enhance the patient's quality of life. In a proof-of-concept study, the novel analytical approaches by the research team detected the onset of epileptic seizures within 2.5 seconds. In contrast, existing approaches have a detection delay exceeding 7 seconds. From a broader perspective, the findings of this research can transform the status quo in real-time monitoring of neurophysiological function. The multidisciplinary research team will strive to provide state-of-the-art research and training opportunities for a diverse group of students that bridges the gap from engineering to the life and brain sciences. The research team will develop a sensor data fusion approach based on graph theoretic topological mapping to combine data acquired from multiple biosensors for neurophysiological change point detection. Unlike existing approaches, which rely on complex signal pre-processing, the graph theoretic approach eschews these computationally demanding steps and is therefore more viable in a practical setting. The research team will exploit this framework using a data library of high-resolution neurophysiological recordings acquired from end users in realistic settings that induce shifts in global functional states (e.g., acute stress, cognitive exhaustion, and fatigue and so on). The research team will integrate automated decision-making approaches in the overall schema to synthesize the information and provide easily interpretable feedback to the end user (e.g., displays on a smart device). Furthermore, the PIs will customize biosensors to accommodate the patient's lifestyle.
实时检测神经生理状态的急性变化,如癫痫发作、认知能力丧失、急性应激等,最终可以防止高风险职业中的事故,这些职业需要坚定不移的关注。这些专业包括危险货物卡车运输、重型机械操作、安全和国防、空中交通管制等。实际上,用于获取捕获大脑功能的丰富生物传感器数据流的技术,例如,脑电图,正变得越来越便携和非侵入性。这些发展不仅提供了实施实时监控的机会,而且还提供了先发制人的警报(例如,智能电话显示器),其可用于指示生理状态的退化。这项研究在生物医学环境中有直接的应用-例如,癫痫是最常见的神经系统疾病之一,困扰着全世界超过5000万人,其中包括美国的300万人。能够检测(或预测)癫痫发作的发作将显着提高患者的生活质量。在一项概念验证研究中,研究小组的新分析方法在2.5秒内检测到癫痫发作。相比之下,现有方法具有超过7秒的检测延迟。从更广泛的角度来看,这项研究的发现可以改变神经生理功能实时监测的现状。多学科研究团队将努力为不同群体的学生提供最先进的研究和培训机会,弥合从工程到生命和脑科学的差距。研究小组将开发一种基于图论拓扑映射的传感器数据融合方法,以联合收割机结合从多个生物传感器获取的数据,用于神经生理学变化点检测。与依赖于复杂信号预处理的现有方法不同,图论方法避免了这些计算要求高的步骤,因此在实际环境中更可行。研究小组将利用这一框架,使用从最终用户获得的高分辨率神经生理记录的数据库,在现实环境中诱导全局功能状态的变化(例如,急性应激、认知衰竭和疲劳等)。研究团队将在总体方案中集成自动化决策方法,以综合信息并向最终用户提供易于解释的反馈(例如,显示在智能设备上)。此外,PI将定制生物传感器以适应患者的生活方式。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Paired Trial Classification: A Novel Deep Learning Technique for MVPA
  • DOI:
    10.3389/fnins.2020.00417
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Jacob M. Williams;A. Samal;Prahalada K. Rao;Matthew R. Johnson
  • 通讯作者:
    Jacob M. Williams;A. Samal;Prahalada K. Rao;Matthew R. Johnson
The role of low-level image features in the affective categorization of rapidly presented scenes
  • DOI:
    10.1371/journal.pone.0215975
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    L. Jack Rhodes;Matthew Ríos;Jacob M. Williams;Gonzalo Quiñones;Prahalada K. Rao;V. Miskovic
  • 通讯作者:
    L. Jack Rhodes;Matthew Ríos;Jacob M. Williams;Gonzalo Quiñones;Prahalada K. Rao;V. Miskovic
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prahalada Rao其他文献

Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao
  • 通讯作者:
    Prahalada Rao
A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing
增材制造中过程-结构-性能建模的物理信息机器学习综述
  • DOI:
    10.1016/j.jmapro.2024.11.066
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Meysam Faegh;Suyog Ghungrad;João Pedro Oliveira;Prahalada Rao;Azadeh Haghighi
  • 通讯作者:
    Azadeh Haghighi
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
Predicting meltpool depth and primary dendritic arm spacing in laser powder bed fusion additive manufacturing using physics-based machine learning
使用基于物理的机器学习预测激光粉末床融合增材制造中的熔池深度和一次枝晶臂间距
  • DOI:
    10.1016/j.matdes.2023.112540
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Alex R. Riensche;Benjamin D. Bevans;Grant King;Ajay Krishnan;Kevin D. Cole;Prahalada Rao
  • 通讯作者:
    Prahalada Rao

Prahalada Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prahalada Rao', 18)}}的其他基金

PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2322322
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2044710
  • 财政年份:
    2021
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
  • 批准号:
    1929172
  • 财政年份:
    2020
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    1752069
  • 财政年份:
    2018
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
  • 批准号:
    1739696
  • 财政年份:
    2017
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1538059
  • 财政年份:
    2015
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
  • 批准号:
    2327374
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Ion-atom collision data for fusion energy, hadron therapy and astrophysics
用于聚变能、强子治疗和天体物理学的离子原子碰撞数据
  • 批准号:
    DP240101210
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Discovery Projects
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323084
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323082
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Fusion Pursuit for Pattern-Mixture Models with Application to Longitudinal Studies with Nonignorable Missing Data
模式混合模型的融合追踪及其在不可忽略缺失数据纵向研究中的应用
  • 批准号:
    2310217
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Intelligent sensing and data fusion in a smart environment for human activity recognition to support self-management of long-term conditions
智能环境中的智能传感和数据融合,用于人类活动识别,支持长期状况的自我管理
  • 批准号:
    2888131
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Studentship
New methods for enhanced brain activity mapping through multi-modal data-fusion and deep learning
通过多模态数据融合和深度学习增强大脑活动映射的新方法
  • 批准号:
    2830309
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了