PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing

PFI-TT:金属增材制造的超快热模拟

基本信息

  • 批准号:
    2044710
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this Partnerships for Innovation - Technology Translation (PFI-TT) project is fast and accurate computer simulation software to predict when and why flaws are formed in metal parts made using additive manufacturing (3D printing). Given its singular design and material flexibility, metal additive manufacturing (metal AM) has the potential to revolutionize U.S. manufacturing by improving part performance and reducing waste and processing costs. However, safety-conscious industries, such as aerospace and biomedical, are hesitant to adopt AM processes due to the frequent occurrence of parts with hidden flaws. Traditional approaches for detecting and correcting flaws involve determining and adjusting the process parameters that lead to defects using a trial-and-error approach, which is expensive and time-consuming. This innovative project utilizes a computational simulation software to identify and correct design and processing problems before a part is printed. Importantly, this approach will provide scientific insights into why certain process parameters and part design features result in defect formation. This efficient and cost-effective method for detecting and correcting flaws in AM parts will enable their wide-spread commercialization and adoption. Ultimately, using AM processes rather than traditional manufacturing may save businesses time and resources while increasing part efficiency and reducing negative environmental impacts. This project will verify, validate, and commercialize a computational heat transfer modeling approach to simulate the temperature distribution in parts made using metal AM. This technology, which is based on the novel concept of heat diffusion on graphs (graph theory), aims to predict and correct design and processing problems before a part is printed. This capability would ultimately lead to improved AM part quality and increased use of AM processes in precision-critical industries. Existing simulation packages are expensive and incorporate proprietary assumptions. Non-proprietary approaches, in turn, take hours, if not days, to simulate the thermal history for a simple part. Prior work by the research team has demonstrated that the graph theory approach is approximately twenty times faster than non-proprietary methods and so computationally lightweight that it could be deployed on a laptop or smartphone. In moving toward commercializing the technology, the project team will employ practical use case samples produced by their industrial partners. The work will address two fundamental research questions: (1) What process conditions and part design features are linked to specific temperature patterns and why? (2) What is the influence of thermal history on flaw formation? The technical results from this project may include a rigorous, experimentally validated, computationally efficient, user-friendly, and industrially corroborated thermal simulation approach that can be used for rapid physics-based optimization of part design and process settings in metal AM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个创新技术转化伙伴关系(PFI-TT)项目的更广泛的影响/商业潜力是快速准确的计算机模拟软件,用于预测使用增材制造(3D打印)制造的金属零件何时以及为什么会形成缺陷。由于其独特的设计和材料的灵活性,金属增材制造(metal AM)有可能通过提高零件性能、减少浪费和加工成本来彻底改变美国制造业。然而,航空航天和生物医学等具有安全意识的行业,由于经常出现带有隐藏缺陷的零件,因此对采用增材制造工艺犹豫不决。检测和纠正缺陷的传统方法包括使用试错方法确定和调整导致缺陷的过程参数,这是昂贵且耗时的。这个创新的项目利用计算模拟软件在零件打印之前识别和纠正设计和加工问题。重要的是,这种方法将提供科学的见解,为什么某些工艺参数和零件设计特征导致缺陷的形成。这种检测和纠正增材制造零件缺陷的高效且经济的方法将使其广泛的商业化和采用。最终,使用AM工艺而不是传统制造可以节省企业的时间和资源,同时提高零件效率并减少对环境的负面影响。该项目将验证、验证和商业化计算传热建模方法,以模拟使用金属增材制造的部件的温度分布。该技术基于图上热扩散的新概念(图论),旨在在零件打印前预测和纠正设计和加工问题。这种能力最终将提高增材制造零件的质量,并增加增材制造工艺在精度关键行业中的使用。现有的模拟软件包价格昂贵,并且包含专有假设。而非专利方法则需要数小时甚至数天的时间来模拟一个简单部件的热历史。研究小组之前的工作已经证明,图论方法比非专有方法快大约20倍,而且计算量很轻,可以部署在笔记本电脑或智能手机上。在将技术商业化的过程中,项目团队将采用由他们的工业伙伴生产的实际用例样本。这项工作将解决两个基本的研究问题:(1)什么工艺条件和零件设计特征与特定的温度模式有关,为什么?(2)热历史对缺陷形成的影响是什么?该项目的技术成果可能包括严格的、实验验证的、计算效率高的、用户友好的和工业证实的热模拟方法,可用于金属增材制造中基于物理的零件设计和工艺设置的快速优化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel
  • DOI:
    10.1016/j.addma.2021.102585
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    11
  • 作者:
    A. Ramalho;T. Santos;Ben Bevans;Z. Smoqi;Prahalada K. Rao;J. P. Oliveira
  • 通讯作者:
    A. Ramalho;T. Santos;Ben Bevans;Z. Smoqi;Prahalada K. Rao;J. P. Oliveira
Closed-loop Control of Meltpool Temperature in Directed Energy Deposition
  • DOI:
    10.1016/j.matdes.2022.110508
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Smoqi;Ben Bevans;A. Gaikwad;J. Craig;Alan Abul-Haj;B. Roeder;B. Macy;J. Shield;Prahalada K. Rao
  • 通讯作者:
    Z. Smoqi;Ben Bevans;A. Gaikwad;J. Craig;Alan Abul-Haj;B. Roeder;B. Macy;J. Shield;Prahalada K. Rao
Monitoring and Prediction of Porosity in Laser Powder Bed Fusion using Physics-informed Meltpool Signatures and Machine Learning
  • DOI:
    10.1016/j.jmatprotec.2022.117550
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Z. Smoqi;A. Gaikwad;Ben Bevans;Md Humaun Kobir;J. Craig;Alan Abul-Haj;A. Peralta;Prahalada K. Rao
  • 通讯作者:
    Z. Smoqi;A. Gaikwad;Ben Bevans;Md Humaun Kobir;J. Craig;Alan Abul-Haj;A. Peralta;Prahalada K. Rao
Ultrasonic nondestructive evaluation of additively manufactured wear coatings
  • DOI:
    10.1016/j.ndteint.2022.102754
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Smoqi;L. Sotelo;A. Gaikwad;J. Turner;Prahalada K. Rao
  • 通讯作者:
    Z. Smoqi;L. Sotelo;A. Gaikwad;J. Turner;Prahalada K. Rao
Discrete Green’s functions and spectral graph theory for computationally efficient thermal modeling
离散格林函数和谱图理论,用于计算高效的热建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prahalada Rao其他文献

Effect of processing parameters and thermal history on microstructure evolution and functional properties in laser powder bed fusion of 316L
加工参数和热历史对 316L 激光粉末床熔合微观结构演变和功能性能的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustubh Deshmukh;A. Riensche;Ben Bevans;Ryan J. Lane;Kyle Snyder;H. Halliday;Christopher B. Williams;Reza Mirzaeifar;Prahalada Rao
  • 通讯作者:
    Prahalada Rao
A review on physics-informed machine learning for process-structure-property modeling in additive manufacturing
增材制造中过程-结构-性能建模的物理信息机器学习综述
  • DOI:
    10.1016/j.jmapro.2024.11.066
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Meysam Faegh;Suyog Ghungrad;João Pedro Oliveira;Prahalada Rao;Azadeh Haghighi
  • 通讯作者:
    Azadeh Haghighi
Stochastic Modeling and Analysis of Spindle Power During Hard Milling With a Focus on Tool Wear
以刀具磨损为重点的硬铣削过程中主轴功率的随机建模和分析
Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
深度神经算子支持增材制造数字孪生建模
Predicting meltpool depth and primary dendritic arm spacing in laser powder bed fusion additive manufacturing using physics-based machine learning
使用基于物理的机器学习预测激光粉末床融合增材制造中的熔池深度和一次枝晶臂间距
  • DOI:
    10.1016/j.matdes.2023.112540
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Alex R. Riensche;Benjamin D. Bevans;Grant King;Ajay Krishnan;Kevin D. Cole;Prahalada Rao
  • 通讯作者:
    Prahalada Rao

Prahalada Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prahalada Rao', 18)}}的其他基金

PFI-TT: Ultrafast Thermal Simulation of Metal Additive Manufacturing
PFI-TT:金属增材制造的超快热模拟
  • 批准号:
    2322322
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    2309483
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RII Track-4: Understanding the Fundamental Thermal Physics in Metal Additive Manufacturing and its Influence on Part Microstructure and Distortion.
RII Track-4:了解金属增材制造中的基础热物理及其对零件微观结构和变形的影响。
  • 批准号:
    1929172
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Smart Additive Manufacturing - Fundamental Research in Sensing, Data Science,and Modeling Toward Zero Part Defects.
职业:智能增材制造 - 传感、数据科学和零件零缺陷建模的基础研究。
  • 批准号:
    1752069
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Cyber-Enabled Online Quality Assurance for Scalable Additive Bio-Manufacturing
CPS:媒介:协作研究:可扩展增材生物制造的网络在线质量保证
  • 批准号:
    1739696
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1719388
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Biosensor Data Fusion for Real-Time Monitoring of Global Neurophysiological Function
生物传感器数据融合实时监测整体神经生理功能
  • 批准号:
    1538059
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

叶绿体蛋白 TT3.2 调控水稻耐热性的分子机制研究
  • 批准号:
    24ZR1431200
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
苯并呋喃-6-酮类化合物TT01f通过调控Jagged1/Notch信号通路改善特发性肺纤维化的药理学机制研究
  • 批准号:
    82304596
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TT3.2通过自噬体-液泡途径调控水稻盐胁迫抗性的分子机制研究
  • 批准号:
    32301745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
TT02通过巨噬细胞外囊泡miR-122/Wnt途径拮抗石英诱导肺纤维化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核用690TT合金传热管表面划伤诱导应力腐蚀裂纹萌生机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
HIIT 对TT+DR 小鼠肩袖肌脂肪浸润的治疗效果和机制研究
  • 批准号:
    2021JJ40949
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GhmiR858靶向TT2协同调控彩色棉纤维色泽形成的分子机制研究
  • 批准号:
    32001591
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Commercial scale production of aligned polymer nanofiber materials and yarns
PFI-TT:定向聚合物纳米纤维材料和纱线的商业规模生产
  • 批准号:
    2345785
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
  • 批准号:
    2345769
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: A Smart Bipolar Surgical Device for Electrosurgery
PFI-TT:用于电外科的智能双极手术设备
  • 批准号:
    2329783
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
  • 批准号:
    2329856
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Local Sensing on Automated Vehicles
PFI-TT:自动驾驶车辆的本地传感
  • 批准号:
    2329820
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Smart windows for on-demand control of solar heat and daylight
PFI-TT:用于按需控制太阳热能和日光的智能窗户
  • 批准号:
    2345804
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: Prototyping a Electromechanical Sensor to Reduce Cheese Trim Losses
PFI-TT:制作机电传感器原型以减少奶酪边角损失
  • 批准号:
    2345656
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
PFI-TT: Chemical Synthesis of a Natural Product Family of Compounds for Tick-Targeted Prevention and Control
PFI-TT:用于蜱目标预防和控制的天然产物化合物家族的化学合成
  • 批准号:
    2345757
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
  • 批准号:
    2345794
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了