GOALI: Flow driven segregation at the particle level
目标:颗粒水平上的流动驱动分离
基本信息
- 批准号:1929265
- 负责人:
- 金额:$ 34.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Granular flows are common in industry. Billions of tons of ores, grains, powders, and plastic resin are handled each year in the US. When particles differ in size or density, flowing granular materials tend to segregate, or de-mix, which can cause severe problems in particle and powder processing in industries where a uniform mixture is usually desired. Although the understanding of segregation and mixing in granular flows has advanced over the last two decades based on an array of experimental, computational, and theoretical approaches, current models of segregation at the particle level are simplistic and empirical. The objective of this GOALI project is to develop a particle-level model based on fundamental physics that can accurately predict segregation from the size and density of the specific particles that are flowing. This particle-level model can then be implemented in large-scale models of granular flows that are used to predict granular flow and segregation in a wide range of particle handling processes. The results of this research, which will be carried out in collaboration with researchers from Procter and Gamble and Dow, will provide practical approaches to enhance mixing (or segregation) of granular materials, which can be utilized to improve and enhance industrial processes in diverse applications ranging from chemicals to pharmaceuticals to foodstuffs to consumer products. The research team will engage students at graduate and undergraduate levels, especially those from underrepresented groups, and provide them with opportunities for research training in collaboration with their industrial counterparts.Until recently, processing approaches to prevent segregation of granular materials have been ad hoc, often resulting in operating conditions that are inefficient. An advection-diffusion-segregation model with a shear rate-based segregation flux model developed by the research team has made it possible to rationally design systems to overcome many of these problems. However, the key particle-based parameter for the segregation flux model is not well understood, not easily predicted for particles of varying size or density, and not based on first principles. This project focuses on developing a predictive framework for particle-level segregation to: (1) Understand the fundamental physical mechanisms of segregation at the particle level; and (2) Develop a predictive segregation model that includes the effects of both particle size and density. Discrete element method (DEM) simulations will be used in which the flow and segregation conditions can be manipulated, sometimes in ways that are not possible experimentally, along with theoretical modeling to connect macroscale continuum models with segregation forces on individual particles. This project moves beyond previous research by considering segregation flux for combined size and density, a much more difficult problem than either one alone. The approaches and tools developed in the project will play an important role in the design of particle processing systems to enhance mixing and prevent segregation of granular materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
颗粒流在工业中很常见。 美国每年处理数十亿吨矿石、谷物、粉末和塑料树脂。当颗粒的尺寸或密度不同时,流动的粒状材料倾向于分离或分层,这可能在通常需要均匀混合物的工业中的颗粒和粉末处理中引起严重的问题。虽然在过去的二十年里,基于一系列实验、计算和理论方法,对颗粒流中的分离和混合的理解已经取得了进展,但目前颗粒水平上的分离模型是简单的和经验的。这个GOALI项目的目标是开发一个基于基础物理学的颗粒级模型,该模型可以根据流动的特定颗粒的尺寸和密度准确预测分离。 这种颗粒级模型,然后可以实现在大规模的颗粒流模型,用于预测颗粒流和分离在广泛的颗粒处理过程。这项研究的结果将与宝洁公司和陶氏公司的研究人员合作进行,将提供实用的方法来增强颗粒材料的混合(或分离),这些方法可用于改善和增强从化学品到药品到食品到消费品等各种应用的工业过程。 该研究团队将吸引研究生和本科生,特别是那些来自代表性不足群体的学生,并为他们提供与工业同行合作的研究培训机会。直到最近,防止颗粒状材料分离的处理方法一直是临时的,通常导致操作条件效率低下。 研究小组开发的对流扩散分离模型和基于剪切速率的分离通量模型使得合理设计系统以克服其中许多问题成为可能。 然而,偏析通量模型的关键的基于颗粒的参数不是很好地理解,不容易预测不同尺寸或密度的颗粒,并且不是基于第一原理。该项目的重点是开发一个颗粒级偏析的预测框架:(1)了解颗粒级偏析的基本物理机制;(2)开发一个预测偏析模型,包括颗粒尺寸和密度的影响。 将使用离散元法(DEM)模拟,其中可以操纵流动和分离条件,有时以实验上不可能的方式,沿着理论建模将宏观连续模型与单个颗粒上的分离力联系起来。这个项目超越了以前的研究,考虑偏析通量的组合尺寸和密度,一个更困难的问题比任何一个单独。该项目中开发的方法和工具将在颗粒处理系统的设计中发挥重要作用,以增强颗粒材料的混合和防止分离。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing non-segregating granular mixtures
设计非分离颗粒混合物
- DOI:10.1051/epjconf/202124903011
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Duan, Yifei;Umbanhowar, Paul B.;Lueptow, Richard M.
- 通讯作者:Lueptow, Richard M.
Segregation forces in dense granular flows: closing the gap between single intruders and mixtures
致密颗粒流中的分离力:缩小单个入侵者与混合物之间的差距
- DOI:10.1017/jfm.2022.12
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Duan, Yifei;Jing, Lu;Umbanhowar, Paul B.;Ottino, Julio M.;Lueptow, Richard M.
- 通讯作者:Lueptow, Richard M.
A unified description of gravity- and kinematics-induced segregation forces in dense granular flows
- DOI:10.1017/jfm.2021.688
- 发表时间:2021-08-26
- 期刊:
- 影响因子:3.7
- 作者:Jing, Lu;Ottino, Julio M.;Umbanhowar, Paul B.
- 通讯作者:Umbanhowar, Paul B.
Exploring shear-induced segregation in controlled-velocity granular flows
探索受控速度颗粒流中剪切引起的分离
- DOI:10.1051/epjconf/202124903012
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jing, Lu;Ottino, Julio M.;Lueptow, Richard M.;Umbanhowar, Paul B.
- 通讯作者:Umbanhowar, Paul B.
Drag force in granular shear flows: regimes, scaling laws and implications for segregation
- DOI:10.1017/jfm.2022.706
- 发表时间:2022-09
- 期刊:
- 影响因子:3.7
- 作者:L. Jing;J. Ottino;P. Umbanhowar;Richard M. Lueptow
- 通讯作者:L. Jing;J. Ottino;P. Umbanhowar;Richard M. Lueptow
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Lueptow其他文献
Richard Lueptow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Lueptow', 18)}}的其他基金
GOALI: Fine Particle De-Mixing in Granular Flows
GOALI:颗粒流中的细颗粒分层
- 批准号:
2203703 - 财政年份:2022
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
GOALI: Charge Interactions in Transport of Mixed Solutes in Nanofiltration Membranes
GOALI:纳滤膜中混合溶质传输中的电荷相互作用
- 批准号:
1840816 - 财政年份:2019
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
Reactive Membrane Technology for Water Treatment
水处理反应膜技术
- 批准号:
0403581 - 财政年份:2004
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
International Couette-Taylor Workshop to be held at Northwestern University, September 2001
国际 Couette-Taylor 研讨会将于 2001 年 9 月在西北大学举行
- 批准号:
0092584 - 财政年份:2001
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
Physics of Filtration in a Rotating Filter Separator
旋转过滤分离器中的过滤物理学
- 批准号:
9613835 - 财政年份:1997
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
Particle Motion in Rotating Filter Separation
旋转过滤器分离中的颗粒运动
- 批准号:
9400033 - 财政年份:1994
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
相似国自然基金
肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
- 批准号:82301457
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
- 批准号:72271205
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
- 批准号:52009057
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 34.24万 - 项目类别:
Continuing Grant
More sustainable biocatalytic imine reductions to chiral amines with hydrogen-driven NADPH recycling operated in batch and continuous flow
通过批量和连续流操作的氢驱动 NADPH 回收,更可持续地生物催化亚胺还原为手性胺
- 批准号:
2889869 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Studentship
Collaborative Research: Data-Driven Microreaction Engineering by Autonomous Robotic Experimentation in Flow
协作研究:通过自主机器人实验进行数据驱动的微反应工程
- 批准号:
2208489 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
Flow Dynamics in Buoyancy-Driven Variable-Density Turbulent Mixing with Compressibility Effects
具有压缩效应的浮力驱动变密度湍流混合中的流动动力学
- 批准号:
2234415 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
An experimental study of multi-ion effects on collisionless shock using electro-magnetically driven plasma flow
使用电磁驱动等离子体流的多离子效应对无碰撞冲击的实验研究
- 批准号:
23K13079 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
GOALI: Novel Plug flow Continuous Crystallizer with Diaphragm-Driven Suspension Transfer
GOALI:带有隔膜驱动悬浮液传输的新型活塞流连续结晶器
- 批准号:
2242255 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
Separation of nuclides from contaminated water by gravity-driven flow chromatography using chelate adsorbent
使用螯合吸附剂通过重力驱动流色谱法从污染水中分离核素
- 批准号:
23K04633 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solute-driven Online Preconcentration in Lateral Flow Assay (SOP-LFA) devices for ultrasensitive biochemical testing
用于超灵敏生化测试的侧流分析 (SOP-LFA) 装置中溶质驱动的在线富集
- 批准号:
EP/X01813X/1 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Research Grant
EAGER: Community-Driven Ice Penetrating Radar Systems for Observing Complex Ice-Sheet Thermal Structure and Flow
EAGER:社区驱动的探冰雷达系统,用于观测复杂的冰盖热结构和流动
- 批准号:
2306186 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Standard Grant
Developing a Novel Data-driven Modelling Strategy for Process Flow Diagram Optimisation
开发用于流程图优化的新型数据驱动建模策略
- 批准号:
2903759 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Studentship