Assessing Performance of Quantum Computers (APQC)
评估量子计算机的性能 (APQC)
基本信息
- 批准号:1931779
- 负责人:
- 金额:$ 3.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The APQC workshop will help define Quantum Performance Assessment, an emerging research field that seeks answers to the overarching question "How do we assess, probe, measure, quantify, and report the quality or performance of quantum computational devices?". Experts from diverse subfields of physics, computer science, and quantum information will discuss aspects of quantum tomography, benchmarking, algorithms, compilation, hardware design, computational complexity, error correction, and experimental physics. The APQC scientific program will include talks in four areas of interest to quantum performance assessment: (i) Quantum characterization, verification, and validation, (ii) Quantum algorithms, (iii) Quantum error correction, (iv) Quantum "supremacy". Participants will share best practices, identify gaps in knowledge, and nucleate interdisciplinary collaborations to address challenge problems in quantum performance assessment.This project advances the objectives of two of 10 Big Ideas for Future NSF Investments: "Quantum Leap" and "Growing Convergent Research at NSF". The 10 big ideas will push forward the frontiers of U.S. research, provide innovative approaches to solve some of the most pressing problems the world faces, as well as lead to discoveries not yet known. This project also advances objectives of the National Quantum Initiative (NQI), a coordinated multiagency program to support research and training in Quantum Information Science (QIS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
APQC研讨会将帮助定义量子性能评估,这是一个新兴的研究领域,旨在回答“我们如何评估、探测、测量、量化和报告量子计算设备的质量或性能?”这个首要问题。来自物理学、计算机科学和量子信息不同子领域的专家将讨论量子层析成像、基准测试、算法、编译、硬件设计、计算复杂性、错误纠正和实验物理等方面的问题。APQC科学计划将包括四个与量子性能评估相关的领域的会谈:(i)量子表征、验证和验证,(ii)量子算法,(iii)量子纠错,(iv)量子“霸权”。参与者将分享最佳实践,确定知识差距,并开展跨学科合作,以解决量子性能评估中的挑战问题。该项目推进了NSF未来投资的10大构想中的两个目标:“量子飞跃”和“NSF日益增长的融合研究”。这10个重大想法将推动美国研究的前沿,为解决世界面临的一些最紧迫的问题提供创新方法,并带来未知的发现。该项目还推进了国家量子计划(NQI)的目标,这是一个协调的多机构计划,旨在支持量子信息科学(QIS)的研究和培训。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Blume-Kohout其他文献
Benchmarking quantum computers
对量子计算机进行基准测试
- DOI:
10.1038/s42254-024-00796-z - 发表时间:
2025-01-07 - 期刊:
- 影响因子:39.500
- 作者:
Timothy Proctor;Kevin Young;Andrew D. Baczewski;Robin Blume-Kohout - 通讯作者:
Robin Blume-Kohout
Schrödinger cat states of a nuclear spin qudit in silicon
硅中核自旋量子比特的薛定谔猫态
- DOI:
10.1038/s41567-024-02745-0 - 发表时间:
2025-01-14 - 期刊:
- 影响因子:18.400
- 作者:
Xi Yu;Benjamin Wilhelm;Danielle Holmes;Arjen Vaartjes;Daniel Schwienbacher;Martin Nurizzo;Anders Kringhøj;Mark R. van Blankenstein;Alexander M. Jakob;Pragati Gupta;Fay E. Hudson;Kohei M. Itoh;Riley J. Murray;Robin Blume-Kohout;Thaddeus D. Ladd;Namit Anand;Andrew S. Dzurak;Barry C. Sanders;David N. Jamieson;Andrea Morello - 通讯作者:
Andrea Morello
Measuring error rates of mid-circuit measurements
测量电路中间测量的错误率
- DOI:
10.1038/s41467-025-60923-x - 发表时间:
2025-07-01 - 期刊:
- 影响因子:15.700
- 作者:
Daniel Hothem;Jordan Hines;Charles Baldwin;Dan Gresh;Robin Blume-Kohout;Timothy Proctor - 通讯作者:
Timothy Proctor
Robin Blume-Kohout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Blume-Kohout', 18)}}的其他基金
Last Frontiers in Quantum Information Science (LFQIS)
量子信息科学的最后前沿 (LFQIS)
- 批准号:
1932044 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
- 批准号:
2234390 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
Breaking barriers to high-performance room-temperature quantum technologies
打破高性能室温量子技术的障碍
- 批准号:
FT210100392 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别:
ARC Future Fellowships
High Performance Control and Error Correction Hardware for Quantum Computing
用于量子计算的高性能控制和纠错硬件
- 批准号:
10037194 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Collaborative R&D
Study of high performance and accuracy eigenvalue solvers for quantum many-body systems
量子多体系统高性能、高精度特征值求解器研究
- 批准号:
22K12052 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Utilising novel microwave filtering techniques for improved performance in superconducting quantum devices
利用新颖的微波滤波技术提高超导量子器件的性能
- 批准号:
EP/W027992/1 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Fellowship
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
- 批准号:
2145604 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant
Quantifying and Optimizing the Performance of Continuous-Variable Quantum Logic Operations
量化和优化连续可变量子逻辑运算的性能
- 批准号:
2304816 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Continuing Grant
Formal methods for reliable, high-performance quantum computing
可靠、高性能量子计算的形式化方法
- 批准号:
RGPIN-2022-03319 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Discovery Grants Program - Individual
Formal methods for reliable, high-performance quantum computing
可靠、高性能量子计算的形式化方法
- 批准号:
DGECR-2022-00363 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Frameworks: Interoperable High-Performance Classical, Machine Learning and Quantum Free Energy Methods in AMBER
合作研究:框架:AMBER 中可互操作的高性能经典、机器学习和量子自由能方法
- 批准号:
2209718 - 财政年份:2022
- 资助金额:
$ 3.78万 - 项目类别:
Standard Grant