CPS: Medium: Collaborative Research: Learning and Verifying Conformant Data-Driven Models for Cyber-Physical Systems

CPS:媒介:协作研究:学习和验证网络物理系统的一致数据驱动模型

基本信息

  • 批准号:
    1932189
  • 负责人:
  • 金额:
    $ 59.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project investigates fundamental techniques for building mathematical models that can be safely used to make trustworthy predictions and control decisions. Mathematical models form the foundation for modern Cyber-Physical Systems (CPS). Examples include vehicle models that predict how a car will move when brakes are applied, or physiological models that predict how the blood glucose levels change in a patient with type-1 diabetes when insulin is administered. The success of machine learning tools has yielded data-driven models such as neural networks. However, depending on how data is collected and the models are learned, it is possible to obtain models that violate fundamental physical, chemical, or physiological facts that can potentially threaten life and property. The approach of the project is to expose these model flaws through advanced analysis. The project seeks to broaden participation in computing through mentoring activities that will encourage undergraduate women and members of underrepresented minority groups to consider a career in research.The research combines falsification methods for exposing failure to conform with verification approaches for rigorously proving conformance. Furthermore, approaches for learning models of dynamical systems from data and imposing core cyber-physical domain knowledge are under investigation. The project is applying these data-driven models with conformance guarantees to the design of safe controllers for autonomous vehicles, models of human insulin glucose regulation and robotic swarms. The effort is advancing CPS education by creating a framework for distance education focused on CPS. The researchers are developing a series of low cost hardware testbeds and self-paced learning tasks that will expose students to the process of building highly reliable and safety critical CPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了建立数学模型的基本技术,这些模型可以安全地用于做出可靠的预测和控制决策。数学模型是现代信息物理系统(CPS)的基础。例如,车辆模型可以预测汽车在刹车时如何移动,生理模型可以预测1型糖尿病患者在注射胰岛素时血糖水平如何变化。机器学习工具的成功产生了数据驱动的模型,如神经网络。然而,根据数据收集和模型学习的方式,有可能获得违反可能威胁生命和财产的基本物理,化学或生理事实的模型。该项目的方法是通过高级分析暴露这些模型缺陷。该项目旨在通过指导活动来扩大对计算的参与,鼓励本科女生和代表性不足的少数群体考虑从事研究工作。该研究将揭露不符合的伪造方法与严格证明符合性的验证方法相结合。此外,正在研究从数据中学习动力系统模型和强加核心网络物理领域知识的方法。该项目将这些具有一致性保证的数据驱动模型应用于自动驾驶汽车的安全控制器设计,人类胰岛素葡萄糖调节模型和机器人群。这项工作正在通过创建一个以CPS为重点的远程教育框架来推进CPS教育。研究人员正在开发一系列低成本的硬件测试平台和自定进度的学习任务,这些任务将使学生接触到构建高度可靠和安全关键CPS的过程。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Safe Robot Learning in Assistive Devices through Neural Network Repair
  • DOI:
    10.48550/arxiv.2303.04431
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Majd;Geoffrey Clark;Tanmay Khandait;Siyu Zhou;S. Sankaranarayanan;Georgios Fainekos;H. B. Amor
  • 通讯作者:
    K. Majd;Geoffrey Clark;Tanmay Khandait;Siyu Zhou;S. Sankaranarayanan;Georgios Fainekos;H. B. Amor
Counterexample-guided computation of polyhedral Lyapunov functions for piecewise linear systems
  • DOI:
    10.1016/j.automatica.2023.111165
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillaume O. Berger;S. Sankaranarayanan
  • 通讯作者:
    Guillaume O. Berger;S. Sankaranarayanan
Training Neural Network Controllers Using Control Barrier Functions in the Presence of Disturbances
An Algorithm for Learning Switched Linear Dynamics from Data
一种从数据中学习切换线性动力学的算法
Decoding Output Sequences for Discrete-Time Linear Hybrid Systems.
解码离散时间线性混合系统的输出序列。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sriram Sankaranarayanan其他文献

Mixed-integer bilevel representability
  • DOI:
    10.1007/s10107-019-01424-w
  • 发表时间:
    2019-08-27
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Amitabh Basu;Christopher Thomas Ryan;Sriram Sankaranarayanan
  • 通讯作者:
    Sriram Sankaranarayanan
Guest Editorial: Special issue on formal modeling and analysis of timed systems
  • DOI:
    10.1007/s11241-017-9274-7
  • 发表时间:
    2017-04-10
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Marco Paolieri;Sriram Sankaranarayanan;Enrico Vicario
  • 通讯作者:
    Enrico Vicario
Large Language Models Enable Automated Formative Feedback in Human-Robot Interaction Tasks
大型语言模型可在人机交互任务中实现自动形成反馈
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Jensen;Sriram Sankaranarayanan;Bradley Hayes
  • 通讯作者:
    Bradley Hayes
A bit too precise? Verification of quantized digital filters
是不是有点太精确了?
Algorithms for Identifying Flagged and Guarded Linear Systems
识别标记和保护线性系统的算法

Sriram Sankaranarayanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sriram Sankaranarayanan', 18)}}的其他基金

Conference: Workshop for Rigorous and Reproducible Scientific Reasoning
会议:严谨且可重复的科学推理研讨会
  • 批准号:
    2336329
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
SHF: Small: Rigorous Synthesis and Verification of Decisions Using Data-Driven Models
SHF:小型:使用数据驱动模型对决策进行严格的综合和验证
  • 批准号:
    1815983
  • 财政年份:
    2018
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
SHF: Small: Bilinear Constraint Solving and Optimization for Program Verification and Synthesis Problems
SHF:小型:程序验证和综合问题的双线性约束求解和优化
  • 批准号:
    1527075
  • 财政年份:
    2015
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: In-Silico Functional Verification of Artificial Pancreas Control Algorithms.
CPS:协同作用:协作研究:人工胰腺控制算法的计算机功能验证。
  • 批准号:
    1446900
  • 财政年份:
    2014
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Gray Box Testing of Complex Cyber-Physical Systems Using Optimization and Optimal Control Techniques
CSR:小型:协作研究:使用优化和最优控制技术对复杂信息物理系统进行灰盒测试
  • 批准号:
    1319457
  • 财政年份:
    2013
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
SHF: Small: Reasoning Rigorously About Probabilistic Programs
SHF:小:对概率程序进行严格推理
  • 批准号:
    1320069
  • 财政年份:
    2013
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
CAREER: Automatic Analysis of Cyber Physical Systems: Bridging the Gap between Research and Industrial Practice
职业:网络物理系统的自动分析:弥合研究与工业实践之间的差距
  • 批准号:
    0953941
  • 财政年份:
    2010
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Continuing Grant
CPS: Small: Formal Analysis of Man-Machine Interfaces to Cyber-Physical Systems
CPS:小型:网络物理系统人机接口的形式分析
  • 批准号:
    1035845
  • 财政年份:
    2010
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Statistical Techniques for Verifying Temporal Properties of Embedded and Mixed-Signal Systems
SHF:小型:协作研究:验证嵌入式和混合信号系统时间特性的统计技术
  • 批准号:
    1016994
  • 财政年份:
    2010
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了