EAGER: Mechanics-Guided Multicellular Self-Organization

EAGER:力学引导的多细胞自组织

基本信息

项目摘要

During the development of multicellular tissues, the formation of shape and pattern occur in fairly standard ways. Homogeneous cell populations are triggered to autonomously self-organize into structured, multicellular tissues. However, the signals that guide this organization remain a mystery, and these processes do not consistently occur properly or completely in an a laboratory culture environment. The goal of this EArly-concept Grant for Exploratory Research (EAGER) project is to develop a microfluidic system in which the culture environment can be precisely controlled so that tissue development from stem cells can be directed towards reproducible structures. Correct tissue development requires both biochemical and mechanical signals, which will be precisely controllable through this system. These signals then trigger gene expression within initially homogeneous sets of cells so that they begin a developmental path. The microfluidic system will also be compatible with live imaging, to support future advanced studies into mechanisms driving cellular organization and tissue development. Improved understanding of 3D tissue development into correctly organized structures will significantly enhance research related to developmental biology, including congenital malformations, as well as tissue engineering and regenerative medicine. Educational and outreach plans include integrating high school students, with priority given to women and underrepresented minorities, into the lab for a 4-8 week research experience as well as engaging undergraduates in research. These projects will also provide an opportunity for senior graduate students and post-doctoral fellows to gain mentorship experience. A new course is also being developed related to stem cell biotechnology and regenerative medicine, which will directly draw on the advances in science that support this research. This cross-disciplinary project involves stem cell biology, developmental biology, signal transduction, mechanobiology, and microfluidics. The objectives of this study are to develop a microfluidic device and use it to achieve controllable synthesis of both the epiblast cyst (a columnar tissue) and the amniotic cyst (a squamous tissue) from human pluripotent stem cells. The multi-chambered, microfluidic system will vary both cell loading and chemical induction factors. Cell seeding will be assessed with confocal imaging. Live imaging and immunostaining will be used to monitor mofphogenetic dynamics of the cyst formation, including lumenogenesis (cavity formation) as well as changes in cell shape. Cell fate will be confirmed by staining for epiblast and amniotic lineage markers, and the dynamics of epithelialization will be examined at varying time points.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在多细胞组织的发展过程中,形状和模式的形成以相当标准的方式发生。 均质细胞群体被触发以自主自治为结构化的多细胞组织。 但是,指导该组织的信号仍然是一个谜,这些过程在实验室文化环境中并不能始终如一地或完全出现。 这项对探索性研究的早期概念赠款(急切)项目的目的是开发一个微流体系统,在该系统中可以精确控制培养环境,以便可以将来自干细胞的组织发育指向可再现的结构。 正确的组织发育需要生化和机械信号,这将通过该系统准确控制。 然后,这些信号在最初均匀的细胞集中触发基因表达,以便它们开始发展路径。 微流体系统也将与实时成像兼容,以支持驱动细胞组织和组织发展的机制的未来高级研究。 对正确组织结构的3D组织发展的了解将大大增强与发育生物学有关的研究,包括先天性畸形,组织工程和再生医学。 教育和外展计划包括将高中生与妇女和代表性不足的少数民族优先融合到实验室中,以获得4-8周的研究经验,并吸引本科生从事研究。 这些项目还将为高级研究生和博士后研究员提供一个机会,以获得指导经验。 还开发了与干细胞生物技术和再生医学有关的新课程,该课程将直接利用支持这项研究的科学进步。 这个跨学科的项目涉及干细胞生物学,发育生物学,信号转导,机械生物学和微流体学。 这项研究的目的是开发微流体装置,并使用它来实现来自人类多能干细胞的尤其细胞囊肿(柱状组织)和羊膜囊肿(鳞状组织)的可控合成。 多芯片的微流体系统将改变细胞负荷和化学诱导因子。 细胞播种将通过共聚焦成像评估。 实时成像和免疫染色将用于监测囊肿形成的莫光发育动力学,包括流明发生(腔形成)以及细胞形状的变化。 细胞命运将通过染色的表皮细胞和羊膜谱系标记来确认,并且将在不同的时间点进行上皮化的动态。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering multiscale structural orders for high-fidelity embryoids and organoids.
  • DOI:
    10.1016/j.stem.2022.04.003
  • 发表时间:
    2022-05-05
  • 期刊:
  • 影响因子:
    23.9
  • 作者:
    Shao, Yue;Fu, Jianping
  • 通讯作者:
    Fu, Jianping
Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture.
  • DOI:
    10.1016/j.biomaterials.2021.120898
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Chen K;Zheng Y;Xue X;Liu Y;Resto Irizarry AM;Tang H;Fu J
  • 通讯作者:
    Fu J
Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche
  • DOI:
    10.1126/sciadv.aax5933
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Y. Zheng;X. Xue;A. M. Resto-Irizarry;Z. Li;Y. Shao;Y. Zheng;G. Zhao;J. Fu
  • 通讯作者:
    Y. Zheng;X. Xue;A. M. Resto-Irizarry;Z. Li;Y. Shao;Y. Zheng;G. Zhao;J. Fu
Stem-cell-based embryo models for fundamental research and translation.
用于基础研究和翻译的基于干细胞的胚胎模型。
  • DOI:
    10.1038/s41563-020-00829-9
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Fu J;Warmflash A;Lutolf MP
  • 通讯作者:
    Lutolf MP
Modeling of human neurulation using bioengineered pluripotent stem cell culture
使用生物工程多能干细胞培养模拟人类神经系统
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianping Fu其他文献

Nanofluidic devices for rapid continuous-flow bioseparation.
用于快速连续流生物分离的纳流体装置。
  • DOI:
    10.1007/978-1-61779-319-6_10
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Mao;Jianping Fu
  • 通讯作者:
    Jianping Fu
Types of Clinical Samples and Cellular Enrichment Strategies
临床样本的类型和细胞富集策略
  • DOI:
    10.1002/9783527801312.ch1
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Koh Meng Aw Yong;Z. T. Yu;K. H. Guan;Jianping Fu
  • 通讯作者:
    Jianping Fu
Credit spreads, endogenous bankruptcy and liquidity risk
信用利差、内生性破产和流动性风险
  • DOI:
    10.1007/s10287-012-0153-3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Jianping Fu;Xingchun Wang;Yongjin Wang
  • 通讯作者:
    Yongjin Wang
Nanofluidic Channels as Advanced Molecular Sieves: Continuous-Flow DNA and Protein Separation
纳米流体通道作为先进的分子筛:连续流 DNA 和蛋白质分离
  • DOI:
    10.1149/ma2006-02/24/1194
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jongyoon Han;P. Mao;Jianping Fu
  • 通讯作者:
    Jianping Fu
Impact of adhesive area on cellular traction force and spread area.
粘合面积对细胞牵引力和铺展面积的影响。

Jianping Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianping Fu', 18)}}的其他基金

Collaborative Research: Mechanoregulation of Amnion Patterning through Activation of Bone Morphogenetic Protein Signaling
合作研究:通过激活骨形态发生蛋白信号传导对羊膜模式进行机械调节
  • 批准号:
    2325361
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
PFI-TT: A novel human developmental toxicity assay platform using microfluidics
PFI-TT:一种使用微流体的新型人类发育毒性测定平台
  • 批准号:
    2213845
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Conference: Participant Support for the 2023 Biomedical Engineering Society - Cellular and Molecular Bioengineering Conference; Palm Springs, California; 2-6 January 2023
会议:2023年生物医学工程学会-细胞与分子生物工程会议参会支持;
  • 批准号:
    2234130
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
I-Corps: Human toxicity assay using synthetic embryo-like structures
I-Corps:使用合成胚胎样结构进行人体毒性测定
  • 批准号:
    2112458
  • 财政年份:
    2021
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Patterned Synthetic Spinal Cords from Human Pluripotent Stem Cells
来自人类多能干细胞的图案化合成脊髓
  • 批准号:
    1901718
  • 财政年份:
    2019
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Biomechanical Phenotyping of Circulating Tumor Cells: A Window to Study Cancer Metastasis
循环肿瘤细胞的生物力学表型:研究癌症转移的窗口
  • 批准号:
    1536087
  • 财政年份:
    2015
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Molecular Sieving in Two-Dimensional Periodic Free-Energy Landscapes Created by Patterned Nanofluidic Devices
由图案化纳米流体装置创建的二维周期性自由能景观中的分子筛分
  • 批准号:
    1231826
  • 财政年份:
    2012
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
CAREER: Biomechanical Phenotyping of Contractile Vascular Smooth Muscle Cells
职业:收缩性血管平滑肌细胞的生物力学表型
  • 批准号:
    1149401
  • 财政年份:
    2012
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Mesenchymal Stem Cells and the Synthetic Microenvironment: An Integrated Approach
间充质干细胞和合成微环境:一种综合方法
  • 批准号:
    1129611
  • 财政年份:
    2011
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Fe、Cu基纳米材料用于NIR-II荧光成像指导的光/热增强化学动力学治疗
  • 批准号:
    52002292
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
中空柱状病毒衣壳蛋白指导的纳米粒子超结构精准组装
  • 批准号:
    21902052
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
重组蛋白指导胶原纤维内磷灰石有序矿化及动力学研究
  • 批准号:
    51902236
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
DNA折纸术指导多级等离子体超结构的组装与性质研究
  • 批准号:
    21802163
  • 批准年份:
    2018
  • 资助金额:
    27.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
  • 批准号:
    10649994
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
  • 批准号:
    10637462
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
Ultrasound Imaging and Treatment of Hernia Mesh
疝气补片的超声成像和治疗
  • 批准号:
    10655885
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
Non-Invasive Functional Assessments for Translational Retinal Therapeutics
视网膜转化治疗的非侵入性功能评估
  • 批准号:
    10654125
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
Mechanisms underlying the reduction in alcohol intake in response to low intensity targeting of the reward circuit
奖励回路低强度目标导致酒精摄入量减少的机制
  • 批准号:
    10733248
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了