EAGER: Mechanics-Guided Multicellular Self-Organization
EAGER:力学引导的多细胞自组织
基本信息
- 批准号:1933061
- 负责人:
- 金额:$ 29.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the development of multicellular tissues, the formation of shape and pattern occur in fairly standard ways. Homogeneous cell populations are triggered to autonomously self-organize into structured, multicellular tissues. However, the signals that guide this organization remain a mystery, and these processes do not consistently occur properly or completely in an a laboratory culture environment. The goal of this EArly-concept Grant for Exploratory Research (EAGER) project is to develop a microfluidic system in which the culture environment can be precisely controlled so that tissue development from stem cells can be directed towards reproducible structures. Correct tissue development requires both biochemical and mechanical signals, which will be precisely controllable through this system. These signals then trigger gene expression within initially homogeneous sets of cells so that they begin a developmental path. The microfluidic system will also be compatible with live imaging, to support future advanced studies into mechanisms driving cellular organization and tissue development. Improved understanding of 3D tissue development into correctly organized structures will significantly enhance research related to developmental biology, including congenital malformations, as well as tissue engineering and regenerative medicine. Educational and outreach plans include integrating high school students, with priority given to women and underrepresented minorities, into the lab for a 4-8 week research experience as well as engaging undergraduates in research. These projects will also provide an opportunity for senior graduate students and post-doctoral fellows to gain mentorship experience. A new course is also being developed related to stem cell biotechnology and regenerative medicine, which will directly draw on the advances in science that support this research. This cross-disciplinary project involves stem cell biology, developmental biology, signal transduction, mechanobiology, and microfluidics. The objectives of this study are to develop a microfluidic device and use it to achieve controllable synthesis of both the epiblast cyst (a columnar tissue) and the amniotic cyst (a squamous tissue) from human pluripotent stem cells. The multi-chambered, microfluidic system will vary both cell loading and chemical induction factors. Cell seeding will be assessed with confocal imaging. Live imaging and immunostaining will be used to monitor mofphogenetic dynamics of the cyst formation, including lumenogenesis (cavity formation) as well as changes in cell shape. Cell fate will be confirmed by staining for epiblast and amniotic lineage markers, and the dynamics of epithelialization will be examined at varying time points.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在多细胞组织的发育过程中,形状和图案的形成以相当标准的方式发生。均质细胞群被触发自主地自组织成结构化的多细胞组织。然而,指导这种组织的信号仍然是一个谜,这些过程并不总是在实验室培养环境中正确或完全地发生。这个探索性研究(EAGER)项目的早期概念资助的目标是开发一种微流体系统,在这种系统中,培养环境可以精确控制,这样干细胞的组织发育就可以定向到可复制的结构。正确的组织发育需要生化和机械信号,通过这个系统可以精确地控制这些信号。然后,这些信号在最初同质的细胞组中触发基因表达,使它们开始发育路径。微流体系统还将与实时成像兼容,以支持未来对驱动细胞组织和组织发育机制的高级研究。提高对三维组织发育成正确组织结构的理解将显著加强发育生物学的相关研究,包括先天性畸形,以及组织工程和再生医学。教育和推广计划包括让高中生(优先考虑女性和代表性不足的少数族裔)进入实验室进行为期4-8周的研究体验,以及让本科生参与研究。这些项目还将为高级研究生和博士后提供获得指导经验的机会。与干细胞生物技术和再生医学相关的一门新课程也正在开发中,这门课程将直接利用支持这项研究的科学进展。这个跨学科项目涉及干细胞生物学、发育生物学、信号转导、机械生物学和微流体学。本研究的目的是开发一种微流控装置,并利用它实现人多能干细胞的外胚层囊肿(柱状组织)和羊膜囊肿(鳞状组织)的可控合成。多室微流体系统将改变细胞负载和化学诱导因子。细胞播种将通过共聚焦成像进行评估。实时成像和免疫染色将用于监测囊肿形成的形态发生动力学,包括腔形成(腔形成)以及细胞形状的变化。细胞命运将通过外胚层和羊膜谱系标记的染色来确认,上皮化的动态将在不同的时间点进行检查。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering multiscale structural orders for high-fidelity embryoids and organoids.
- DOI:10.1016/j.stem.2022.04.003
- 发表时间:2022-05-05
- 期刊:
- 影响因子:23.9
- 作者:Shao, Yue;Fu, Jianping
- 通讯作者:Fu, Jianping
Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture.
- DOI:10.1016/j.biomaterials.2021.120898
- 发表时间:2021-08
- 期刊:
- 影响因子:14
- 作者:Chen K;Zheng Y;Xue X;Liu Y;Resto Irizarry AM;Tang H;Fu J
- 通讯作者:Fu J
Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche
- DOI:10.1126/sciadv.aax5933
- 发表时间:2019-12
- 期刊:
- 影响因子:13.6
- 作者:Y. Zheng;X. Xue;A. M. Resto-Irizarry;Z. Li;Y. Shao;Y. Zheng;G. Zhao;J. Fu
- 通讯作者:Y. Zheng;X. Xue;A. M. Resto-Irizarry;Z. Li;Y. Shao;Y. Zheng;G. Zhao;J. Fu
Stem-cell-based embryo models for fundamental research and translation.
用于基础研究和翻译的基于干细胞的胚胎模型。
- DOI:10.1038/s41563-020-00829-9
- 发表时间:2021-03
- 期刊:
- 影响因子:41.2
- 作者:Fu J;Warmflash A;Lutolf MP
- 通讯作者:Lutolf MP
Modeling of human neurulation using bioengineered pluripotent stem cell culture
使用生物工程多能干细胞培养模拟人类神经系统
- DOI:10.1016/j.cobme.2020.02.002
- 发表时间:2020
- 期刊:
- 影响因子:3.9
- 作者:Xue, Xufeng;Wang, Ryan P.;Fu, Jianping
- 通讯作者:Fu, Jianping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Credit spreads, endogenous bankruptcy and liquidity risk
信用利差、内生性破产和流动性风险
- DOI:
10.1007/s10287-012-0153-3 - 发表时间:
2012 - 期刊:
- 影响因子:0.9
- 作者:
Jianping Fu;Xingchun Wang;Yongjin Wang - 通讯作者:
Yongjin Wang
Nanofluidic Channels as Advanced Molecular Sieves: Continuous-Flow DNA and Protein Separation
纳米流体通道作为先进的分子筛:连续流 DNA 和蛋白质分离
- DOI:
10.1149/ma2006-02/24/1194 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jongyoon Han;P. Mao;Jianping Fu - 通讯作者:
Jianping Fu
Morphogenesis beyond in vivo
体内之外的形态发生
- DOI:
10.1038/s42254-023-00669-x - 发表时间:
2023-12-11 - 期刊:
- 影响因子:39.500
- 作者:
Yue Liu;Xufeng Xue;Shiyu Sun;Norio Kobayashi;Yung Su Kim;Jianping Fu - 通讯作者:
Jianping Fu
Impact of adhesive area on cellular traction force and spread area.
粘合面积对细胞牵引力和铺展面积的影响。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Elijah N. Holland;Deborah Lobaccaro;Jianping Fu;Andrés J. García - 通讯作者:
Andrés J. García
The Non-Equilibrium Thermodynamics and Kinetics Governing Coupled Stress Fiber and Focal Adhesion Dynamics
- DOI:
10.1016/j.bpj.2011.11.1907 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Krishnakumar Garikipati;Jianping Fu;Mirko Maraldi - 通讯作者:
Mirko Maraldi
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Collaborative Research: Mechanoregulation of Amnion Patterning through Activation of Bone Morphogenetic Protein Signaling
合作研究:通过激活骨形态发生蛋白信号传导对羊膜模式进行机械调节
- 批准号:
2325361 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
PFI-TT: A novel human developmental toxicity assay platform using microfluidics
PFI-TT:一种使用微流体的新型人类发育毒性测定平台
- 批准号:
2213845 - 财政年份:2022
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Conference: Participant Support for the 2023 Biomedical Engineering Society - Cellular and Molecular Bioengineering Conference; Palm Springs, California; 2-6 January 2023
会议:2023年生物医学工程学会-细胞与分子生物工程会议参会支持;
- 批准号:
2234130 - 财政年份:2022
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
I-Corps: Human toxicity assay using synthetic embryo-like structures
I-Corps:使用合成胚胎样结构进行人体毒性测定
- 批准号:
2112458 - 财政年份:2021
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Patterned Synthetic Spinal Cords from Human Pluripotent Stem Cells
来自人类多能干细胞的图案化合成脊髓
- 批准号:
1901718 - 财政年份:2019
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Biomechanical Phenotyping of Circulating Tumor Cells: A Window to Study Cancer Metastasis
循环肿瘤细胞的生物力学表型:研究癌症转移的窗口
- 批准号:
1536087 - 财政年份:2015
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Molecular Sieving in Two-Dimensional Periodic Free-Energy Landscapes Created by Patterned Nanofluidic Devices
由图案化纳米流体装置创建的二维周期性自由能景观中的分子筛分
- 批准号:
1231826 - 财政年份:2012
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
CAREER: Biomechanical Phenotyping of Contractile Vascular Smooth Muscle Cells
职业:收缩性血管平滑肌细胞的生物力学表型
- 批准号:
1149401 - 财政年份:2012
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Mesenchymal Stem Cells and the Synthetic Microenvironment: An Integrated Approach
间充质干细胞和合成微环境:一种综合方法
- 批准号:
1129611 - 财政年份:2011
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
- 批准号:
2331994 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
- 批准号:
EP/X027163/2 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
- 批准号:
BB/Y003896/1 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
- 批准号:
EP/Y002415/1 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Research Grant
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
- 批准号:
DP240103328 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Discovery Projects














{{item.name}}会员




