CAREER: Biomechanical Phenotyping of Contractile Vascular Smooth Muscle Cells

职业:收缩性血管平滑肌细胞的生物力学表型

基本信息

项目摘要

CBET-1149401FuThe major goal of this CAREER proposal is to investigate mechanical force-mediated biomechanical responses of vascular smooth muscle cells, a key player in the context of mechanically exacerbated vascular diseases. Although there have been studies characterizing cellular responses of vascular smooth muscle cells to mechanical stimuli, the precise mechanical characteristics of their responses (including their innate contraction and cell stiffness modulation) remains largely elusive and uncharacterized. Given the critical involvements of contraction and mechanical stiffness modulations of vascular smooth muscle cells in regulating hypertension-induced vascular pathologies, our research is set out to specifically address this critical knowledge gap by leveraging our demonstrated expertise in microfabrication and cell mechanics to generate novel micromechanical tools to investigate force-mediated biomechanical phenotypic changes of vascular smooth muscle cells. Biomechanical changes in vascular smooth muscle cell contraction and cell stiffness play an important functional role in regulating adaptation and remodeling of vessel walls in hypertension. Thus, a better understanding of the intimate interaction between external forces and changes in biomechanical properties of vascular smooth muscle cells will provide critical insights into how vascular smooth muscle cells transduce these forces and ultimately pave the way to developing drugs that specifically interfere with pressure-induced vascular pathologies. As an integral part of this CAREER proposal, a comprehensive education plan will be developed to target students from different educational levels and genders and ethnicities. Technologies developed in the context of this CAREER proposal will be used as vehicles for outreach activities targeting K-12 students in Ann Arbor and Ypsilanti school districts. We will develop educational modules aimed at altering preconceptions of science and engineering held by K-12 students. A new interdisciplinary course in Biomechanics will also be developed as an outcome of this CAREER proposal.
本CAREER提案的主要目标是研究血管平滑肌细胞的机械力介导的生物力学反应,平滑肌细胞是机械加重血管疾病的关键参与者。虽然已经有研究表征血管平滑肌细胞对机械刺激的细胞反应,但其反应的精确机械特性(包括其固有收缩和细胞刚度调节)在很大程度上仍然难以捉摸和未表征。鉴于血管平滑肌细胞的收缩和机械刚度调节在调节高血压诱导的血管病理中的关键作用,我们的研究旨在通过利用我们在微加工和细胞力学方面的专业知识,产生新的微机械工具来研究血管平滑肌细胞的力介导的生物力学表型变化,从而专门解决这一关键知识差距。高血压患者血管平滑肌细胞收缩和细胞刚度的生物力学变化在调节血管壁的适应和重塑中起着重要的功能作用。因此,更好地了解外力与血管平滑肌细胞生物力学特性变化之间的密切相互作用,将为血管平滑肌细胞如何转导这些力提供关键见解,并最终为开发特异性干扰压力诱导血管病变的药物铺平道路。作为职业发展计划的一个组成部分,将针对不同教育水平、性别和种族的学生制定一项全面的教育计划。在此CAREER提案的背景下开发的技术将被用作针对安娜堡和伊普斯兰蒂学区K-12学生的外展活动的工具。我们将开发旨在改变K-12学生对科学和工程的先入为主观念的教育模块。一个新的跨学科课程,生物力学也将开发作为这个职业建议的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianping Fu其他文献

Credit spreads, endogenous bankruptcy and liquidity risk
信用利差、内生性破产和流动性风险
  • DOI:
    10.1007/s10287-012-0153-3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Jianping Fu;Xingchun Wang;Yongjin Wang
  • 通讯作者:
    Yongjin Wang
Nanofluidic Channels as Advanced Molecular Sieves: Continuous-Flow DNA and Protein Separation
纳米流体通道作为先进的分子筛:连续流 DNA 和蛋白质分离
  • DOI:
    10.1149/ma2006-02/24/1194
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jongyoon Han;P. Mao;Jianping Fu
  • 通讯作者:
    Jianping Fu
Morphogenesis beyond in vivo
体内之外的形态发生
  • DOI:
    10.1038/s42254-023-00669-x
  • 发表时间:
    2023-12-11
  • 期刊:
  • 影响因子:
    39.500
  • 作者:
    Yue Liu;Xufeng Xue;Shiyu Sun;Norio Kobayashi;Yung Su Kim;Jianping Fu
  • 通讯作者:
    Jianping Fu
Impact of adhesive area on cellular traction force and spread area.
粘合面积对细胞牵引力和铺展面积的影响。
The Non-Equilibrium Thermodynamics and Kinetics Governing Coupled Stress Fiber and Focal Adhesion Dynamics
  • DOI:
    10.1016/j.bpj.2011.11.1907
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Krishnakumar Garikipati;Jianping Fu;Mirko Maraldi
  • 通讯作者:
    Mirko Maraldi

Jianping Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianping Fu', 18)}}的其他基金

Collaborative Research: Mechanoregulation of Amnion Patterning through Activation of Bone Morphogenetic Protein Signaling
合作研究:通过激活骨形态发生蛋白信号传导对羊膜模式进行机械调节
  • 批准号:
    2325361
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
PFI-TT: A novel human developmental toxicity assay platform using microfluidics
PFI-TT:一种使用微流体的新型人类发育毒性测定平台
  • 批准号:
    2213845
  • 财政年份:
    2022
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Conference: Participant Support for the 2023 Biomedical Engineering Society - Cellular and Molecular Bioengineering Conference; Palm Springs, California; 2-6 January 2023
会议:2023年生物医学工程学会-细胞与分子生物工程会议参会支持;
  • 批准号:
    2234130
  • 财政年份:
    2022
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
I-Corps: Human toxicity assay using synthetic embryo-like structures
I-Corps:使用合成胚胎样结构进行人体毒性测定
  • 批准号:
    2112458
  • 财政年份:
    2021
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
EAGER: Mechanics-Guided Multicellular Self-Organization
EAGER:力学引导的多细胞自组织
  • 批准号:
    1933061
  • 财政年份:
    2019
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Patterned Synthetic Spinal Cords from Human Pluripotent Stem Cells
来自人类多能干细胞的图案化合成脊髓
  • 批准号:
    1901718
  • 财政年份:
    2019
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Biomechanical Phenotyping of Circulating Tumor Cells: A Window to Study Cancer Metastasis
循环肿瘤细胞的生物力学表型:研究癌症转移的窗口
  • 批准号:
    1536087
  • 财政年份:
    2015
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Molecular Sieving in Two-Dimensional Periodic Free-Energy Landscapes Created by Patterned Nanofluidic Devices
由图案化纳米流体装置创建的二维周期性自由能景观中的分子筛分
  • 批准号:
    1231826
  • 财政年份:
    2012
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Mesenchymal Stem Cells and the Synthetic Microenvironment: An Integrated Approach
间充质干细胞和合成微环境:一种综合方法
  • 批准号:
    1129611
  • 财政年份:
    2011
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant

相似海外基金

ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Research Grant
CAREER: Understanding the Biomechanical Consequences of Local Tissue Defects on Aortic Rupture
职业:了解局部组织缺陷对主动脉破裂的生物力学影响
  • 批准号:
    2340666
  • 财政年份:
    2024
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
CAREER: Biomechanical Characterization of Periventricular White Matter and its Age-related Degeneration
职业:脑室周围白质的生物力学特征及其与年龄相关的变性
  • 批准号:
    2337739
  • 财政年份:
    2024
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002466/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Research Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Research Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
  • 批准号:
    2327732
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
  • 批准号:
    2317442
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
  • 批准号:
    2317444
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Standard Grant
Shoulder dysfunction and breast cancer treatment: biomechanical analysis of the impact of reconstruction and mastectomy
肩部功能障碍和乳腺癌治疗:重建和乳房切除术影响的生物力学分析
  • 批准号:
    488096
  • 财政年份:
    2023
  • 资助金额:
    $ 44.91万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了