CBMS Conference: Bayesian Forecasting and Dynamic Models
CBMS 会议:贝叶斯预测和动态模型
基本信息
- 批准号:1933542
- 负责人:
- 金额:$ 3.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the 2020 NSF-CBMS conference "Bayesian forecasting and dynamic models" hosted by the Department of Statistics at the University of California Santa Cruz, during August 10-14, 2020. The conference will feature three principal lecturers that will deliver 10 main lectures. Professor Mike West from Duke University, who is a foundational researcher and a major reference in the field of Bayesian forecasting and dynamic models will deliver 7 main lectures. Professor Hedibert Lopes from Insper and Professor Raquel Prado from UCSC will deliver 3 main lectures. The conference will also feature a case-study session in a specific area of application to expose junior participants to the process of developing focused statistical tools for highly structured time series data. In addition, the conference will offer "hands-on" sessions on practical data analysis and a panel session with industry experts from companies in Northern California. This will provide participants additional exposure on how Bayesian forecasting and dynamic models are applied in practical non-academic settings. Established and junior researchers, postdoctoral fellows and students will have the opportunity to learn and discuss the major foundational ideas as well as recent and modern models and computing methods in the area of Bayesian time series and dynamic modeling. The conference aims to attract new researchers to this field. Furthermore, given the regional emphasis of the conference, it is expected that the conference will provide an important opportunity for strengthening links and collaborations between multiple groups in the Western United States. Adequate modeling and forecasting of temporal data, particularly in large-dimensional settings, is key in a wide range of applications. This area has defined a major research arena in the mathematical and statistical sciences for years and has also led to intense research activity in methodological, computational and applied areas where these methods are used. In particular, recent important research advances in this area have led to a massive body of literature that comprise new sophisticated models and methods for analysis and forecasting of time series data, as well as powerful computational tools and related software for inference and forecasting in an efficient manner. Exploring, understanding, and applying these models and tools can be a daunting task for newcomers, imposing a steep barrier into the field. This conference, along with the monograph derived from it will facilitate introduction to the area by providing a comprehensive review of Bayesian modeling and forecasting tools.For more information, please refer to the conference webpage: http://cbms.soe.ucsc.edu/2020/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持2020年8月10日至14日由加州大学圣克鲁斯统计系主办的2020年NSF-CBMS会议“贝叶斯预测和动态模型”。会议将有三位主要讲师,将提供10个主要讲座。来自杜克大学的Mike West教授是贝叶斯预测和动态模型领域的基础研究人员和主要参考,他将提供7个主要讲座。来自Incident的Hedibert Lopes教授和来自UCSC的Raquel普拉多教授将提供3个主要讲座。会议还将在一个具体的应用领域举行案例研究会议,使初级与会者了解为高度结构化的时间序列数据开发重点突出的统计工具的过程。此外,会议将提供关于实际数据分析的“动手”会议,以及与来自北方加州公司的行业专家的小组会议。这将为参与者提供关于贝叶斯预测和动态模型如何应用于实际非学术环境的额外曝光。 建立和初级研究人员,博士后研究员和学生将有机会学习和讨论贝叶斯时间序列和动态建模领域的主要基础思想以及最近和现代模型和计算方法。会议旨在吸引新的研究人员进入这一领域。此外,鉴于会议的区域重点,预计会议将为加强美国西部多个团体之间的联系和合作提供重要机会。充分的建模和预测的时态数据,特别是在大尺寸的设置,是在广泛的应用程序的关键。 这个领域已经定义了一个主要的研究竞技场在数学和统计科学多年来,也导致了激烈的研究活动,在方法,计算和应用领域,这些方法的使用。特别是,最近在这一领域的重要研究进展导致了大量的文献,其中包括用于分析和预测时间序列数据的新的复杂模型和方法,以及用于以有效的方式进行推理和预测的强大的计算工具和相关软件。 探索、理解和应用这些模型和工具对于新手来说可能是一项艰巨的任务,给这个领域设置了一个陡峭的障碍。本次会议,沿着从它衍生的专题论文将通过提供贝叶斯建模和预测工具的全面审查来促进对该领域的介绍。欲了解更多信息,请参阅会议网页:http://cbms.soe.ucsc.edu/2020/This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raquel Prado其他文献
Bayesian Forecasting and Dynamic Models
- DOI:
10.1007/b98971 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Raquel Prado - 通讯作者:
Raquel Prado
Characterisation of bark of six species from mixed Atlantic forest
- DOI:
10.1016/j.indcrop.2019.05.033 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Leyre Sillero;Raquel Prado;Maria Angeles Andrés;Jalel Labidi - 通讯作者:
Jalel Labidi
Screen Magnification for Readers with Low Vision: A Study on Usability and Performance
低视力读者的屏幕放大率:可用性和性能研究
- DOI:
10.1145/3597638.3608383 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meini Tang;R. Manduchi;Susana T L Chung;Raquel Prado - 通讯作者:
Raquel Prado
Raquel Prado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raquel Prado', 18)}}的其他基金
Statistical Approaches for Complex Multi-Dimensional Data
复杂多维数据的统计方法
- 批准号:
1853210 - 财政年份:2019
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian State-Space Models for Behavioral Time Series Data
合作研究:行为时间序列数据的贝叶斯状态空间模型
- 批准号:
1461497 - 财政年份:2015
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
Bayesian nonparametric methods for spectral analysis of complex brain signals
用于复杂脑信号频谱分析的贝叶斯非参数方法
- 批准号:
1407838 - 财政年份:2014
- 资助金额:
$ 3.48万 - 项目类别:
Continuing Grant
Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
- 批准号:
1060911 - 财政年份:2011
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
S-STATSMODEL: Scholarships in Statistics and Stochastic Modeling
S-STATSMODEL:统计和随机建模奖学金
- 批准号:
0849831 - 财政年份:2009
- 资助金额:
$ 3.48万 - 项目类别:
Continuing Grant
相似海外基金
Conference on Advances in Bayesian and Frequentist Theory and Methods for Complex Data
复杂数据贝叶斯和频率论理论与方法进展会议
- 批准号:
2150557 - 财政年份:2022
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
CBMS Conference: Bayesian Modeling for Spatial and Spatio-Temporal Data
CBMS 会议:空间和时空数据的贝叶斯建模
- 批准号:
1642617 - 财政年份:2017
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
Student Travel Support for International Society for Bayesian Analysis Conference
国际贝叶斯分析学会会议的学生旅行支持
- 批准号:
1614593 - 财政年份:2016
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
10th Conference on Bayesian Nonparametrics
第十届贝叶斯非参数会议
- 批准号:
1507428 - 财政年份:2015
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
9th Conference on Bayesian Nonparametrics
第九届贝叶斯非参数会议
- 批准号:
1262034 - 财政年份:2013
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Bayesian Nonparametric Statistical Methods: Theory and Applications - Summer 2010
CBMS 数学科学区域会议 - 贝叶斯非参数统计方法:理论与应用 - 2010 年夏季
- 批准号:
0938769 - 财政年份:2010
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
Case Studies in Bayesian Statistics and Machine Learning Workshop Conference Travel; October 2009, Pittsburgh, PA
贝叶斯统计和机器学习研讨会会议旅行案例研究;
- 批准号:
0939609 - 财政年份:2009
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
International Conference on Bayesian Modeling: ISBA-1997; Istanbul, Turkey, August 16-18, 1997
国际贝叶斯建模会议:ISBA-1997;
- 批准号:
9707364 - 财政年份:1997
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
Mathematical Sciences:Regional Conference on "Bayesian Methods in Finite Population Sampling Theory"
数学科学:“有限总体抽样理论中的贝叶斯方法”区域会议
- 批准号:
9312931 - 财政年份:1994
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Conference on Forecasting, Predictionand Modeling in Statistics and Econometrics: Bayesian and Non-Bayesian Approaches
数学科学:统计和计量经济学中的预测、预测和建模会议:贝叶斯和非贝叶斯方法
- 批准号:
9409774 - 财政年份:1994
- 资助金额:
$ 3.48万 - 项目类别:
Standard Grant














{{item.name}}会员




