Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
基本信息
- 批准号:1060911
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of behavioral and physiological data often is difficult because such data typically consist of large-dimensional, high-resolution nonstationary time series. Consequently, there is an increasing need for statistically principled and computationally efficient approaches for complex time series data. This research project focuses on the development of a coherent suite of novel statistical models and related methodology for large-dimensional, high-resolution multivariate time series. The statistical methods to be developed will be used to link nonstationary features of physiological time series, such as functional magnetic resonance image (fMRI), to behavioral and neurocognitive assessment data. The project will develop two types of approaches for modeling multi-dimensional time series. The first approach will model the set of nonstationary time series via the locally stationary representation that characterizes the spectral dynamics of the process in terms of a time-varying spectral density matrix. The second approach consists of capturing dynamical dependencies in the data via Bayesian state-space models that will be able to estimate the coherency across the time series over time.The statistical models and methods developed in this research project will be used to study how physiological time series in healthy individuals are related to neurocognitive scores. Data that will be studied include measures derived from brain images as well as time series of various regions of interest derived from fMRI. Behavioral and physiological signals recorded to monitor cognitive fatigue and workload also will be studied. Even though the focus of this project is on the analysis of physiological and behavioral data, the models and methods that will be developed in this research project are very general and have the potential of impacting other scientific fields given that highly structured multivariate time series data often are collected in the areas of econometrics, environmetrics, geosciences, and signal processing.
行为和生理数据的研究往往是困难的,因为这样的数据通常包括大维度,高分辨率的非平稳时间序列。 因此,越来越需要针对复杂时间序列数据的统计原则和计算效率高的方法。 该研究项目的重点是开发一套新颖的统计模型和相关方法,用于高维,高分辨率的多变量时间序列。 将要开发的统计方法将用于将生理时间序列的非平稳特征(如功能性磁共振成像(fMRI))与行为和神经认知评估数据联系起来。 该项目将开发两种多维时间序列建模方法。 第一种方法将通过局部平稳表示对非平稳时间序列集进行建模,该局部平稳表示以时变谱密度矩阵来表征过程的谱动态。 第二种方法包括通过贝叶斯状态空间模型捕获数据中的动态依赖关系,该模型将能够估计时间序列随时间的一致性。本研究项目中开发的统计模型和方法将用于研究健康个体的生理时间序列与神经认知评分之间的关系。 将被研究的数据包括来自大脑图像的测量以及来自功能磁共振成像的各个感兴趣区域的时间序列。 还将研究记录的用于监测认知疲劳和工作负荷的行为和生理信号。 尽管该项目的重点是生理和行为数据的分析,但该研究项目中开发的模型和方法非常通用,并且具有影响其他科学领域的潜力,因为高度结构化的多变量时间序列数据通常收集在计量经济学,计量经济学,地球科学和信号处理领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raquel Prado其他文献
Bayesian Forecasting and Dynamic Models
- DOI:
10.1007/b98971 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Raquel Prado - 通讯作者:
Raquel Prado
Characterisation of bark of six species from mixed Atlantic forest
- DOI:
10.1016/j.indcrop.2019.05.033 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Leyre Sillero;Raquel Prado;Maria Angeles Andrés;Jalel Labidi - 通讯作者:
Jalel Labidi
Screen Magnification for Readers with Low Vision: A Study on Usability and Performance
低视力读者的屏幕放大率:可用性和性能研究
- DOI:
10.1145/3597638.3608383 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meini Tang;R. Manduchi;Susana T L Chung;Raquel Prado - 通讯作者:
Raquel Prado
Raquel Prado的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raquel Prado', 18)}}的其他基金
CBMS Conference: Bayesian Forecasting and Dynamic Models
CBMS 会议:贝叶斯预测和动态模型
- 批准号:
1933542 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Statistical Approaches for Complex Multi-Dimensional Data
复杂多维数据的统计方法
- 批准号:
1853210 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian State-Space Models for Behavioral Time Series Data
合作研究:行为时间序列数据的贝叶斯状态空间模型
- 批准号:
1461497 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Bayesian nonparametric methods for spectral analysis of complex brain signals
用于复杂脑信号频谱分析的贝叶斯非参数方法
- 批准号:
1407838 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
S-STATSMODEL: Scholarships in Statistics and Stochastic Modeling
S-STATSMODEL:统计和随机建模奖学金
- 批准号:
0849831 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant