Statistical Approaches for Complex Multi-Dimensional Data

复杂多维数据的统计方法

基本信息

  • 批准号:
    1853210
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This research project will develop models and statistical tools for the analysis of complex multi-dimensional temporal data. Data with these characteristics commonly arise in fields such as neuroscience, the environmental sciences, and economics. Currently, there are limitations with the statistical tools available to analyze these data, particularly in neuroimaging. Some of the commonly used methods are either not able to adequately capture the complex structure underlying these data or are computationally expensive and only practically feasible in very low-dimensional settings. This project will result in improved methods that are general and therefore applicable to the analysis of data from a variety of fields. New educational and training opportunities will be provided to graduate students pursuing research at the interface between statistics and other areas such as neuroscience and the environmental sciences. Open-source software that implements the new statistical tools will be developed and made publicly available.The research project will develop new multivariate Bayesian dynamic models for joint analysis and forecasting of a collection of non-stationary time series data. These models and related computational tools will lead to joint and fast inference on the time-varying spectral features that characterize each individual time series, as well as inference on the time-frequency relationships across the time series components in the set. Dynamic hierarchical models for analysis of multiple time series also will be developed. The hierarchical approach will borrow strength across multiple time series to make accurate inferences on their common underlying time-frequency structure. Tools for sparsity and dimension reduction in these multi-dimensional temporal model settings will be developed and implemented. The investigator will apply the new methods to brain imaging data, multi-channel electroencephalogram data, fMRI data, and multivariate environmental data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发用于分析复杂多维时态数据的模型和统计工具。具有这些特征的数据通常出现在神经科学、环境科学和经济学等领域。目前,可用于分析这些数据的统计工具存在局限性,特别是在神经影像学方面。一些常用的方法要么不能充分捕捉这些数据背后的复杂结构,要么计算成本高,只有在非常低维的设置实际可行。该项目将改进通用方法,从而适用于分析来自各个领域的数据。将向在统计与神经科学和环境科学等其他领域之间的接口进行研究的研究生提供新的教育和培训机会。将开发并公开提供采用新统计工具的开放源码软件,该研究项目将开发新的多元贝叶斯动态模型,用于联合分析和预测一系列非固定时间序列数据。这些模型和相关的计算工具将导致联合和快速推断的时变频谱特征,表征每个单独的时间序列,以及推断的时间-频率关系的时间序列组件在集合中。还将开发用于分析多个时间序列的动态层次模型。分层方法将借用多个时间序列的力量,对它们共同的基本时频结构进行准确的推断。在这些多维时间模型设置稀疏和降维工具将开发和实施。研究人员将把新方法应用于脑成像数据、多通道脑电图数据、功能磁共振成像数据和多变量环境数据。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements
  • DOI:
    10.1016/j.renene.2020.05.182
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Garcia, Irene;Huo, Stella;Bravo, Lelys
  • 通讯作者:
    Bravo, Lelys
Efficient Bayesian PARCOR approaches for dynamic modeling of multivariate time series
用于多元时间序列动态建模的高效贝叶斯 PARCOR 方法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Wenjie Zhao, Raquel Prado
  • 通讯作者:
    Wenjie Zhao, Raquel Prado
Fast Bayesian inference on spectral analysis of multivariate stationary time series
  • DOI:
    10.1016/j.csda.2022.107596
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhixiong Hu;R. Prado
  • 通讯作者:
    Zhixiong Hu;R. Prado
Hierarchical dynamic PARCOR models for analysis of multiple brain signals
用于分析多个大脑信号的分层动态 PARCOR 模型
  • DOI:
    10.4310/21-sii699
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhao, Wenjie;Prado, Raquel
  • 通讯作者:
    Prado, Raquel
Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions
  • DOI:
    10.1111/biom.13631
  • 发表时间:
    2022-03-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yu,Cheng-Han;Prado,Raquel;Rowe,Daniel
  • 通讯作者:
    Rowe,Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raquel Prado其他文献

Bayesian Forecasting and Dynamic Models
  • DOI:
    10.1007/b98971
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raquel Prado
  • 通讯作者:
    Raquel Prado
Characterisation of bark of six species from mixed Atlantic forest
  • DOI:
    10.1016/j.indcrop.2019.05.033
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Leyre Sillero;Raquel Prado;Maria Angeles Andrés;Jalel Labidi
  • 通讯作者:
    Jalel Labidi
Screen Magnification for Readers with Low Vision: A Study on Usability and Performance
低视力读者的屏幕放大率:可用性和性能研究

Raquel Prado的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raquel Prado', 18)}}的其他基金

CBMS Conference: Bayesian Forecasting and Dynamic Models
CBMS 会议:贝叶斯预测和动态模型
  • 批准号:
    1933542
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian State-Space Models for Behavioral Time Series Data
合作研究:行为时间序列数据的贝叶斯状态空间模型
  • 批准号:
    1461497
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Bayesian nonparametric methods for spectral analysis of complex brain signals
用于复杂脑信号频谱分析的贝叶斯非参数方法
  • 批准号:
    1407838
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
  • 批准号:
    1060911
  • 财政年份:
    2011
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
S-STATSMODEL: Scholarships in Statistics and Stochastic Modeling
S-STATSMODEL:统计和随机建模奖学金
  • 批准号:
    0849831
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    2038556
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    1854220
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Approaches to Topological Data Analysis that Address Questions in Complex Data
FRG:协作研究:解决复杂数据问题的拓扑数据分析统计方法
  • 批准号:
    1854336
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Predictive analytics of integrated genomic and clinical data using machine learning and complex statistical approaches
使用机器学习和复杂的统计方法对综合基因组和临床数据进行预测分析
  • 批准号:
    MR/S003711/2
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Fellowship
Predictive analytics of integrated genomic and clinical data using machine learning and complex statistical approaches
使用机器学习和复杂的统计方法对综合基因组和临床数据进行预测分析
  • 批准号:
    MR/S003711/1
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Fellowship
CDS&E: Computational Riemannian Approaches for Statistical Analysis and Modeling of Complex Structures
CDS
  • 批准号:
    1621787
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
GRK 1953: Statistical Modelling of Complex Systems and Processes - Advanced Nonparametric Approaches
GRK 1953:复杂系统和过程的统计建模 - 高级非参数方法
  • 批准号:
    232955966
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Training Groups
Statistical physics approaches to nonlinear transport on complex networks
复杂网络上非线性传输的统计物理方法
  • 批准号:
    24540395
  • 财政年份:
    2012
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical approaches for complex spatial/temporal data
复杂空间/时间数据的统计方法
  • 批准号:
    332457-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 28万
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了