HDR IDEAS^2 Institute: Data-Driven Frameworks for Materials Discovery
HDR IDEAS^2 Institute:材料发现的数据驱动框架
基本信息
- 批准号:1934641
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The discovery and development of new materials with unique properties and functionalities has revolutionized entire industries, including aviation, space, communication, biomedical, and automotive. Materials design has been traditionally experimentally and computationally intensive. However, advances in data-driven approaches, computational power, and experimental capabilities have created a tipping point for targeted and efficient materials design. This Harnessing the Data Revolution Institutes for Data-Intensive Research in Science and Engineering (HDR-I-DIRSE) Frameworks award supports conceptualization of an Institute to advance data-intensive research in Materials Science and Engineering. The IDEAS^2 (Integrated Data Environment for Accelerated Stochastic Science) Institute for Materials Discovery will provide a platform for the development of experimental and computational frameworks for materials advancement, that encourages collaboration and the sharing of data-driven approaches among research communities. The Data Science methods are intrinsically interoperable, and this program will engage diverse research communities in the collaborative development of large data frameworks that are applicable across a wide range of disciplines. The IDEAS^2 Institute will be structured to lower the barrier for domain scientists to work with data scientists through a variety of mechanisms including biannual "Teach the Teacher" workshops, an annual IDEAS^2 Symposium, visiting faculty positions at UCSB, and a range of other community engagement activities. Students working on this program will gain valuable multidisciplinary research and educational opportunities.First-principle calculations of thermodynamic and kinetic properties and information from microstructurally-based, high throughput models will be integrated into the design of data structures and the analyses of the developed techniques. The developed frameworks will be grounded in machine learning approaches that are fundamentally-based, computationally and statistically tractable, and incorporate domain knowledge and simulation results. The frameworks and data developed in the Institute - such as those to predict processing advancements from first principles, model these advancements in a high-throughput fashion, enable high-throughput experimentation, align the resulting experimental data (chemical, microstructure, deformation, etc.), and efficiently mine the resultant high-dimensional datasets - will be integrated with an open-source platform (BisQue) to facilitate both internal and external collaboration on their development for a broad range of materials applications. The computational infrastructure and parallelization of calculations through the BisQue platform enables the screening of very large datasets, with a hierarchical workflow requiring minimal software requirements (only a web browser is needed) and minimal domain knowledge of the user in modeling of materials. The focus of this program is on a research area with major and broad implications on numerous scientific and technological fields, and it also represents a unique training opportunity with acquired skills that will propel its graduates to the forefront of the emerging, critical field of data-driven science, as well as its many application areas within various scientific disciplines and high-tech industry sectors. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity and is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有独特性能和功能的新材料的发现和开发已经彻底改变了整个行业,包括航空,航天,通信,生物医学和汽车。材料设计传统上是实验和计算密集型的。然而,数据驱动方法、计算能力和实验能力的进步为有针对性和高效的材料设计创造了一个临界点。“利用数据革命促进科学与工程数据密集型研究机构”(HDR-I-DIRSE)框架奖支持一个机构的概念化,以推进材料科学与工程领域的数据密集型研究。IDEAS^2(加速随机科学集成数据环境)材料发现研究所将为材料进步的实验和计算框架的发展提供一个平台,鼓励研究团体之间的合作和数据驱动方法的共享。数据科学方法本质上是可互操作的,该计划将使不同的研究团体参与到适用于广泛学科的大型数据框架的协作开发中。IDEAS^2研究所的结构将通过各种机制降低领域科学家与数据科学家合作的障碍,包括两年一次的“Teach The Teacher”研讨会、每年一次的IDEAS^2研讨会、访问UCSB的教师职位,以及一系列其他社区参与活动。参加本课程的学生将获得宝贵的多学科研究和教育机会。热力学和动力学性质的第一性原理计算以及基于微结构的高通量模型的信息将集成到数据结构的设计和已开发技术的分析中。开发的框架将以机器学习方法为基础,这些方法基于基础,可计算和统计处理,并结合领域知识和模拟结果。研究所开发的框架和数据-例如从第一性原理预测加工进步的框架和数据,以高通量的方式模拟这些进步,实现高通量实验,对齐所得实验数据(化学,微观结构,变形等);并有效地挖掘由此产生的高维数据集-将与一个开源平台(BisQue)集成,以促进内部和外部合作,以开发广泛的材料应用。通过BisQue平台的计算基础设施和并行化计算使筛选非常大的数据集成为可能,分层工作流程需要最少的软件要求(只需要一个web浏览器)和用户在材料建模方面的最少领域知识。该计划的重点是对众多科学和技术领域具有重大和广泛影响的研究领域,它也代表了一个独特的培训机会,获得技能,将推动其毕业生进入新兴的关键数据驱动科学领域的前沿,以及在各种科学学科和高科技产业部门的许多应用领域。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分,由民用、机械和制造创新部共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stage-wise Conservative Linear Bandits
- DOI:
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Ahmadreza Moradipari;Christos Thrampoulidis;M. Alizadeh
- 通讯作者:Ahmadreza Moradipari;Christos Thrampoulidis;M. Alizadeh
Decentralized Multi-Agent Linear Bandits with Safety Constraints
具有安全约束的去中心化多智能体线性强盗
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Amani, S.;Thrampoulidis, C.
- 通讯作者:Thrampoulidis, C.
Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:1.5
- 作者:Tengyang Xie;Yifei Ma;Yu-Xiang Wang
- 通讯作者:Tengyang Xie;Yifei Ma;Yu-Xiang Wang
Mechanical Metrics of Virtual Polycrystals (MechMet)
虚拟多晶的力学指标 (MechMet)
- DOI:10.1007/s40192-021-00206-7
- 发表时间:2021
- 期刊:
- 影响因子:3.3
- 作者:Dawson, Paul R.;Miller, Matthew P.;Pollock, Tresa M.;Wendorf, Joe;Mills, Leah H.;Stinville, Jean Charles;Charpagne, Marie Agathe;Echlin, McLean P.
- 通讯作者:Echlin, McLean P.
Safe Linear Thompson Sampling with Side Information
带有辅助信息的安全线性 Thompson 采样
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:5.4
- 作者:Moradipari, A.;Amani, S.;Alizadeh, M.;Thrampoulidis, C.
- 通讯作者:Thrampoulidis, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Daly其他文献
Dark field X-ray microscopy below liquid-helium temperature: The case of NaMnOsub2/sub
液氦温度下的暗场 X 射线显微镜:以 NaMnO₂为例
- DOI:
10.1016/j.matchar.2023.113174 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:5.500
- 作者:
Jayden Plumb;Ishwor Poudyal;Rebecca L. Dally;Samantha Daly;Stephen D. Wilson;Zahir Islam - 通讯作者:
Zahir Islam
Experimental assessment of toughness in ceramic matrix composites using the J-integral with digital image correlation part I: methodology and validation
使用具有数字图像相关性的 J 积分对陶瓷基复合材料的韧性进行实验评估第一部分:方法和验证
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:4.5
- 作者:
J. Tracy;A. Waas;Samantha Daly - 通讯作者:
Samantha Daly
Deformation twinning and detwinning in extruded Mg-4Al: emIn-situ/em experiment and crystal plasticity simulation
- DOI:
10.1016/j.ijplas.2022.103345 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:12.800
- 作者:
Mohammadreza Yaghoobi;Zhe Chen;Aeriel D. Murphy-Leonard;Veera Sundararaghavan;Samantha Daly;John E. Allison - 通讯作者:
John E. Allison
Toward Reliable Ad-hoc Scientific Information Extraction: A Case Study on Two Materials Datasets
实现可靠的临时科学信息提取:两种材料数据集的案例研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Satanu Ghosh;Neal R. Brodnik;C. Frey;Collin S. Holgate;T.M. Pollock;Samantha Daly;Samuel Carton - 通讯作者:
Samuel Carton
The microstructure length scale of strain rate sensitivity in ultrafine-grained aluminum
- DOI:
10.1557/jmr.2015.58 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:2.900
- 作者:
Adam D. Kammers;Jittraporn Wongsa-Ngam;Terence G. Langdon;Samantha Daly - 通讯作者:
Samantha Daly
Samantha Daly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Daly', 18)}}的其他基金
Understanding the Interactions between Recoverable and Permanent Deformations in Shape Memory Alloys
了解形状记忆合金中可恢复变形和永久变形之间的相互作用
- 批准号:
1851603 - 财政年份:2019
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Understanding Micromechanisms of Fatigue in Shape Memory Alloys
职业:了解形状记忆合金疲劳的微观机制
- 批准号:
1756393 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Understanding Micromechanisms of Fatigue in Shape Memory Alloys
职业:了解形状记忆合金疲劳的微观机制
- 批准号:
1251891 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Experimental Investigation of Microstructural Effects on Deformation and Fracture Mechanisms in Nanostructured Metallic Materials
微观结构对纳米结构金属材料变形和断裂机制影响的实验研究
- 批准号:
0927530 - 财政年份:2009
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
Mediated Trust: Ideas, Interests, Institutions, Futures
中介信任:想法、兴趣、机构、未来
- 批准号:
FL230100075 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Australian Laureate Fellowships
ART: Inspiring the Generation of New Ideas and Translational Excellence at Florida State University
艺术:激发佛罗里达州立大学新想法的产生和卓越的转化
- 批准号:
2331357 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Cooperative Agreement
BBconnect - a people-centred, system aware design feasibility investigation that aims to define innovation opportunities, generate and evaluate viable ideas for more accessible, effective and integrated bladder and bowel healthcare services.
BBconnect - 一项以人为本、系统意识的设计可行性调查,旨在定义创新机会,生成和评估可行的想法,以提供更方便、有效和综合的膀胱和肠道医疗保健服务。
- 批准号:
10089501 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Collaborative R&D
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
- 批准号:
2322056 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
- 批准号:
2322055 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
NNA Collaboratory: Collaborative Research: ACTION - Alaska Coastal Cooperative for Co-producing Transformative Ideas and Opportunities in the North
NNA 合作实验室:合作研究:行动 - 阿拉斯加沿海合作社,共同在北部产生变革性的想法和机遇
- 批准号:
2318377 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Cooperative Agreement
NNA Collaboratory: Collaborative Research: ACTION - Alaska Coastal Cooperative for Co-producing Transformative Ideas and Opportunities in the North
NNA 合作实验室:合作研究:行动 - 阿拉斯加沿海合作社,共同在北部产生变革性的想法和机遇
- 批准号:
2318375 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Cooperative Agreement
LEAPS-MPS: Prediction issues in progressively censored life-testing experiments: New ideas and applications
LEAPS-MPS:逐步审查的寿命测试实验中的预测问题:新想法和应用
- 批准号:
2316744 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
- 批准号:
2231662 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Collaborative Research: Ideas Lab: The Role of Extracellular RNA in Intercellular and Interkingdom Communication
合作研究:创意实验室:细胞外 RNA 在细胞间和王国间通讯中的作用
- 批准号:
2243537 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant














{{item.name}}会员




