Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
基本信息
- 批准号:1934829
- 负责人:
- 金额:$ 59.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The storage and release of elastic strain energy in materials, along with mechanical strength, play important roles in both natural and engineered mechanical actuation systems, such as biological tissues responsible for the fast and high-powered locomotions in animals. The modulus of resilience provides the measure of a material?s ability to absorb and release elastic strain energy, determined by the ratio between strength and stiffness of these materials. In general, engineering the modulus of resilience is extremely difficult because it requires asymmetrically increasing strength and stiffness against their mutual scaling behavior. As an alternative route, this award supports fundamental research to elucidate how nanoparticles can be used to tune mechanical behaviors of their polymer composites for simultaneously achieving high strength and low stiffness. This knowledge will accelerate the design of high strength, yet compliant polymeric materials for a broad range of applications, such as light-weight elastic energy storage devices, protective coatings, flexible and foldable optoelectronics, and artificial muscles. Thus, this research will not only promote the progress of science, but also advance the national health, prosperity and welfare. It can also help to secure national defense through technological innovations, e.g. light-weight energy absorption and protection systems for aircrafts. By integrating multiple disciplines, this project will train a diverse group of students in the areas of mechanics of materials, polymer science, mechanical engineering, and material science and engineering for next-generation workforce development. The educational objectives of the project will be realized through curriculum development, undergraduate research opportunities, summer research program for high school students, research experience for K-12 teachers program, and K-12 outreach program. Special efforts will be made to involve underrepresented students in this project. The objective of this project is to test the hypothesis that the combination of high strength and low stiffness is attributed to the unique microstructure of polymer nanocomposites that contains spherical nanoparticles weakly interacting with soft polymer matrix. To achieve this objective, the research plan consists of two major aims. The goal of Aim 1 is to establish a research framework integrating multiscale molecular modeling and complementary nanomechanical experiments for studying polymer nanocomposites with high strength and low stiffness. It will be used to elucidate how the size of nanoparticles, in comparison with free volume elements of the polymer matrix, can influence mechanical behaviors of polymer nanocomposites. In Aim 2, the underpinning mechanics principle of attaining the combination of high strength and low stiffness will be generalized to guide exploration of a novel class of polymer nanocomposites. These nanocomposites with ultra-high elastic energy storage capability can be used for superior mechanical protection, artificial muscles, soft robotics and flexible electronics. The interdisciplinary effort will open promising avenues for quantitatively understanding the anomalous high strength and low stiffness behaviors, and offer mechanistic insights into the design principles of a novel class of nanocomposites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料中弹性应变能的存储和释放以及机械强度在自然和工程机械驱动系统中都发挥着重要作用,例如负责动物快速和高功率运动的生物组织。回弹模量提供了材料吸收和释放弹性应变能的能力的量度,由这些材料的强度和刚度之间的比率确定。一般来说,设计弹性模量是极其困难的,因为它需要不对称地增加强度和刚度以对抗它们的相互缩放行为。作为替代途径,该奖项支持基础研究,以阐明如何使用纳米粒子来调整其聚合物复合材料的机械行为,以同时实现高强度和低刚度。这些知识将加速高强度且合规的聚合物材料的设计,其应用范围广泛,例如轻质弹性储能装置、保护涂层、柔性可折叠光电器件和人造肌肉。因此,这项研究不仅将促进科学进步,还将促进国民健康、繁荣和福利。它还可以通过技术创新帮助确保国防安全,例如:飞机的轻型能量吸收和保护系统。通过整合多个学科,该项目将在材料力学、高分子科学、机械工程以及材料科学与工程领域培养多元化的学生,以培养下一代劳动力。该项目的教育目标将通过课程开发、本科生研究机会、高中生暑期研究计划、K-12教师研究经验计划和K-12外展计划来实现。我们将特别努力让代表性不足的学生参与该项目。该项目的目的是检验这样的假设:高强度和低刚度的组合归因于聚合物纳米复合材料的独特微观结构,该复合材料含有与软聚合物基体弱相互作用的球形纳米粒子。为了实现这一目标,该研究计划包括两个主要目标。目标1的目标是建立一个整合多尺度分子建模和互补纳米力学实验的研究框架,用于研究高强度和低刚度的聚合物纳米复合材料。它将用于阐明纳米颗粒的尺寸与聚合物基体的自由体积元素相比如何影响聚合物纳米复合材料的机械行为。在目标 2 中,将推广实现高强度和低刚度相结合的基础力学原理,以指导对新型聚合物纳米复合材料的探索。这些具有超高弹性储能能力的纳米复合材料可用于卓越的机械保护、人造肌肉、软机器人和柔性电子产品。这项跨学科的努力将为定量理解异常高强度和低刚度行为开辟有希望的途径,并为新型纳米复合材料的设计原理提供机械见解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers
- DOI:10.1007/s10409-021-01100-3
- 发表时间:2021-05
- 期刊:
- 影响因子:3.5
- 作者:Guang Chen;Weikang Xian;Qiming Wang;Ying Li
- 通讯作者:Guang Chen;Weikang Xian;Qiming Wang;Ying Li
Unified machine learning protocol for copolymer structure-property predictions.
- DOI:10.1016/j.xpro.2022.101875
- 发表时间:2022-12-16
- 期刊:
- 影响因子:0
- 作者:Tao, Lei;Arbaugh, Tom;Byrnes, John;Varshney, Vikas;Li, Ying
- 通讯作者:Li, Ying
Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature
- DOI:10.1021/acs.jcim.1c01031
- 发表时间:2021-11-22
- 期刊:
- 影响因子:5.6
- 作者:Tao, Lei;Varshney, Vikas;Li, Ying
- 通讯作者:Li, Ying
Unraveling the ultrahigh modulus of resilience of Core-Shell SU-8 nanocomposite nanopillars fabricated by vapor-phase infiltration
揭示气相渗透制备的核壳SU-8纳米复合材料纳米柱的超高回弹性模量
- DOI:10.1016/j.matdes.2023.111770
- 发表时间:2023
- 期刊:
- 影响因子:8.4
- 作者:Li, Zhongyuan;He, Jinlong;Subramanian, Ashwanth;Tiwale, Nikhil;Dusoe, Keith J.;Nam, Chang-Yong;Li, Ying;Lee, Seok-Woo
- 通讯作者:Lee, Seok-Woo
Super Stretchable and Compressible Hydrogels Inspired by Hook-and-Loop Fasteners
- DOI:10.1021/acs.langmuir.1c00924
- 发表时间:2021-06-15
- 期刊:
- 影响因子:3.9
- 作者:Ding, Fuchuan;Ding, Hao;Sun, Luyi
- 通讯作者:Sun, Luyi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Li其他文献
High Temperature Proton Conductors Resarch and Application
高温质子导体的研究与应用
- DOI:
10.4028/www.scientific.net/amr.750-752.1219 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
H. Zhao;Y. Wu;Ying Li;C. Bi - 通讯作者:
C. Bi
Convolutional neural network to identify cylindrical vector beam modes
卷积神经网络识别圆柱矢量光束模式
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lizhen Chen;Wenjie Xiong;Peipei Wang;Zebin Huang;Yanliang He;Junmin Liu;Huapeng Ye;Ying Li;Dianyuan Fan;Shuqing Chen - 通讯作者:
Shuqing Chen
The practical doping principles of tuning antiferromagnetic state in BiMn2O5 ceramics.
BiMn2O5 陶瓷中反铁磁态调节的实用掺杂原理。
- DOI:
10.1007/s00339-023-06390-x - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wenlong Su;Guixin He;Xiaoxu Bao;Chunyan He;Ying Li;Lingding Zhang;Ying Zhang;Jiale Liu;Jiawei Chen;Jieyu Chen;YulongBai;Shifeng Zhao - 通讯作者:
Shifeng Zhao
Sound Velocities, Elasticity, and Mechanical Properties of Stoichiometric Submicron Polycrystalline delta-MoN at High Pressure
高压下化学计量亚微米多晶 delta-MoN 的声速、弹性和机械性能
- DOI:
10.1021/acs.inorgchem.1c00406 - 发表时间:
2021 - 期刊:
- 影响因子:4.6
- 作者:
Yongtao Zou;Ke Liu;Pei Wang;Daowei Wang;Mu Li;Ying Li;Leiming Fang;Hongbin Zhuo;Shuangchen Ruan;Cangtao Zhou;Yusheng Zhao - 通讯作者:
Yusheng Zhao
Microstructure analysis of sol-gel-derived nanocrystalline ITO thin films
溶胶-凝胶法纳米晶ITO薄膜的微观结构分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.7
- 作者:
Yang Ren;Gaoyang Zhao;Dichun Chen;Ying Li - 通讯作者:
Ying Li
Ying Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Li', 18)}}的其他基金
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 59.69万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 59.69万 - 项目类别:
Continuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
- 批准号:
2326072 - 财政年份:2023
- 资助金额:
$ 59.69万 - 项目类别:
Continuing Grant
Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
- 批准号:
2314424 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2205007 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Continuing Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
- 批准号:
2323108 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Standard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2313754 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2153894 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Continuing Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:
2316200 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Standard Grant
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:
2316200 - 财政年份:2022
- 资助金额:
$ 59.69万 - 项目类别:
Standard Grant
Implemetation of residual stress to the microstructurally based fracture mechanics at the example of a martensitic steel and application on the fracture-mechanical analysis of the fatigue strength of springs
以马氏体钢为例,残余应力在基于微观结构的断裂力学中的应用及其在弹簧疲劳强度断裂力学分析中的应用
- 批准号:
414274929 - 财政年份:2018
- 资助金额:
$ 59.69万 - 项目类别:
Research Grants
CAREER: Mechanics of Ultra-Strength Nanomaterials: Revealing Deformation Mechanisms
职业:超强纳米材料力学:揭示变形机制
- 批准号:
1056293 - 财政年份:2011
- 资助金额:
$ 59.69万 - 项目类别:
Continuing Grant
ACL Reconstruction in the Female Athlete: Strength, Knee Mechanics and Outcome
女运动员 ACL 重建:力量、膝关节力学和结果
- 批准号:
7407067 - 财政年份:2008
- 资助金额:
$ 59.69万 - 项目类别:
ACL Reconstruction in the Female Athlete: Strength, Knee Mechanics and Outcome
女运动员 ACL 重建:力量、膝关节力学和结果
- 批准号:
7608631 - 财政年份:2008
- 资助金额:
$ 59.69万 - 项目类别:
ACL Reconstruction in the Female Athlete: Strength, Knee Mechanics and Outcome
女运动员 ACL 重建:力量、膝关节力学和结果
- 批准号:
7769513 - 财政年份:2008
- 资助金额:
$ 59.69万 - 项目类别:
Damage Mechanics Approach for the Strength Evaluation of Solder Joint with Voids.
具有空洞焊点强度评估的损伤力学方法。
- 批准号:
12650097 - 财政年份:2000
- 资助金额:
$ 59.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of the theory of plasticity and fracture mechanics for evaluating the strength of tubes with defects under cyclic pressure
循环压力下有缺陷管材强度评价塑性和断裂力学理论的改进
- 批准号:
5284068 - 财政年份:2000
- 资助金额:
$ 59.69万 - 项目类别:
Research Grants
Fracture mechanics approach on evaluation of residual strength of structural timbers having a crack which emanates in moisture non-steady state condition
潮湿非稳态条件下裂纹结构木材残余强度评价的断裂力学方法
- 批准号:
10660160 - 财政年份:1998
- 资助金额:
$ 59.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of bonding strength of dissimilar material joints by fracture mechanics
断裂力学评价异种材料接头的结合强度
- 批准号:
06650808 - 财政年份:1994
- 资助金额:
$ 59.69万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




