HDR TRIPODS: Penn Institute for Foundations of Data Science
HDR TRIPODS:宾夕法尼亚大学数据科学研究所
基本信息
- 批准号:1934876
- 负责人:
- 金额:$ 131.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The growing field of data science promises to bring many benefits to society: personalized knowledge and services; improved healthcare; improved decision-making at individual, organizational, national, and international levels; a safer and possibly fairer society; and many others. The ability to realize these promises, however, depends critically on building the right foundational principles for the field. This project establishes an NSF TRIPODS Institute, termed the Penn Institute for Foundations of Data Science (PIFODS), at the University of Pennsylvania, with the goal of bringing together scientists and ideas from multiple disciplines, including computer science, electrical engineering, statistics, and mathematics, in order to collectively develop long-lasting principles for data science that can serve the field for decades to come. The main activities of the Institute will include transdisciplinary research, education and training, engagement with the broader research community through invited seminars and workshops, and engagement with applied scientists and practitioners. The PIFODS team seeks to develop principles for the following five thrusts: principles for complex learning tasks; principles for efficient optimization (convex, non-convex, and submodular); principles for streaming, distributed, and massively parallel data analysis; principles for privacy-preserving and fairness-preserving data analysis; and principles for reproducible data analysis. Each of these thrusts addresses an important foundational need in data science. These needs range from designing learning algorithms with stronger performance guarantees, and developing principles for optimization in adaptive settings, to developing a fundamental understanding of the tradeoffs between various modern computational resources in data science, as well as developing data science algorithms that guarantee meaningful notions of privacy, fairness, and reproducibility. Each thrust requires interactions among several of the TRIPODS disciplines; several of these thrusts also naturally interact with each other. On the education and training side, the PIFODS team has already initiated several new transdisciplinary courses related to data science that are aimed at developing a common language across disciplines; under the aegis of the Institute, the team will continue to further develop and refine these courses, and will incorporate feedback from these courses to inform the university's emerging transdisciplinary data science curriculum. On the applications side, the PIFODS team will actively engage with applied scientists and practitioners of data science, including both members of the broader university community and selected industry practitioners; these engagements will both help to inform possible additional research thrusts in the future, and help to solve important data-driven problems in society. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不断发展的数据科学领域有望为社会带来许多好处:个性化的知识和服务;改善医疗保健;改善个人,组织,国家和国际层面的决策;一个更安全,更公平的社会;等等。然而,实现这些承诺的能力关键取决于为该领域建立正确的基本原则。该项目在宾夕法尼亚大学建立了一个NSF TRIPODS研究所,称为宾夕法尼亚数据科学基础研究所(PIFODS),其目标是汇集来自多个学科的科学家和想法,包括计算机科学,电气工程,统计学和数学,以便共同开发长期持久的数据科学原则,可以在未来几十年内为该领域服务。研究所的主要活动将包括跨学科研究、教育和培训,通过应邀举办的研讨会和讲习班与更广泛的研究界接触,以及与应用科学家和从业人员接触。PIFODS团队旨在为以下五个方面制定原则:复杂学习任务的原则;有效优化的原则(凸,非凸和子模块);流式,分布式和大规模并行数据分析的原则;隐私保护和公平保护数据分析的原则;以及可重现数据分析的原则。每一个目标都解决了数据科学中一个重要的基础需求。这些需求包括设计具有更强性能保证的学习算法,开发自适应设置中的优化原则,对数据科学中各种现代计算资源之间的权衡进行基本理解,以及开发保证隐私,公平性和可重复性的有意义概念的数据科学算法。每一个推力都需要TRIPODS的几个学科之间的相互作用;其中几个推力也自然地相互作用。在教育和培训方面,PIFODS团队已经启动了几个新的与数据科学相关的跨学科课程,旨在开发跨学科的共同语言;在研究所的主持下,该团队将继续进一步开发和完善这些课程,并将从这些课程中获得反馈,为大学新兴的跨学科数据科学课程提供信息。在应用方面,PIFODS团队将积极与应用科学家和数据科学从业者合作,包括更广泛的大学社区成员和选定的行业从业者;这些合作将有助于为未来可能的其他研究方向提供信息,并有助于解决社会中重要的数据驱动问题。该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning from Noisy Labels with No Change to the Training Process
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mingyuan Zhang;Jane Lee;S. Agarwal
- 通讯作者:Mingyuan Zhang;Jane Lee;S. Agarwal
Near-linear Size Hypergraph Cut Sparsifiers
- DOI:10.1109/focs46700.2020.00015
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Yu Chen;S. Khanna;Ansh Nagda
- 通讯作者:Yu Chen;S. Khanna;Ansh Nagda
Sublinear Time Hypergraph Sparsification via Cut and Edge Sampling Queries
- DOI:10.4230/lipics.icalp.2021.53
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Yu Chen;S. Khanna;Ansh Nagda
- 通讯作者:Yu Chen;S. Khanna;Ansh Nagda
Algorithms and Learning for Fair Portfolio Design
公平投资组合设计的算法和学习
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Diana, Emily;Dick, Travis;Elzayn, Hadi;Kearns, Michael;Roth, Aaron;Schutzman, Zachary;Sharifi-Malvajerdi, Saeed;Ziani, Juba
- 通讯作者:Ziani, Juba
Choice Bandits
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Arpit Agarwal;Nicholas Johnson;S. Agarwal
- 通讯作者:Arpit Agarwal;Nicholas Johnson;S. Agarwal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shivani Agarwal其他文献
Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila.
嗜水气单胞菌单体 UDP-半乳糖 4-差向异构酶的活性位点和辅酶结合袋的表征。
- DOI:
10.5483/bmbrep.2010.43.6.419 - 发表时间:
2010 - 期刊:
- 影响因子:3.8
- 作者:
Shivani Agarwal;N. Mishra;Shivangi Agarwal;A. Dixit - 通讯作者:
A. Dixit
Correlation between the milling time and hydrogen storage properties of ZrCrFe ternary alloy
- DOI:
10.1016/j.ijhydene.2009.12.010 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
Ankur Jain;Shivani Agarwal;Devendra Vyas;Pragya Jain;I.P. Jain - 通讯作者:
I.P. Jain
Milling induced surface modification of V-based catalyst to improve sorption kinetics of KSiHsub3/sub: An XPS investigation
- DOI:
10.1016/j.ijhydene.2022.04.083 - 发表时间:
2022-12-25 - 期刊:
- 影响因子:8.300
- 作者:
Shashi Sharma;Rini Singh;Takayuki Ichikawa;Ankur Jain;Shivani Agarwal - 通讯作者:
Shivani Agarwal
Significance of Hydrogen as Economic and Environmentally Friendly Fuel
氢作为经济环保燃料的意义
- DOI:
10.3390/en14217389 - 发表时间:
2021 - 期刊:
- 影响因子:3.2
- 作者:
Shivanshu Sharma;Shivani Agarwal;Ankur Jain - 通讯作者:
Ankur Jain
Malicious behavior identification using Dual Attention Based dense bi-directional gated recurrent network in the cloud computing environment
云计算环境中基于双重注意力的密集双向门控循环网络的恶意行为识别
- DOI:
10.1016/j.cose.2025.104418 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:5.400
- 作者:
Nandita Goyal;Kanika Taneja;Shivani Agarwal;Harsh Khatter - 通讯作者:
Harsh Khatter
Shivani Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shivani Agarwal', 18)}}的其他基金
RI: Small: Modern Machine Learning Algorithms for Ranking from Pairwise and Higher-Order Comparisons
RI:小型:用于通过成对和高阶比较进行排名的现代机器学习算法
- 批准号:
1717290 - 财政年份:2017
- 资助金额:
$ 131.05万 - 项目类别:
Standard Grant
相似海外基金
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023109 - 财政年份:2020
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023239 - 财政年份:2020
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023495 - 财政年份:2020
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023166 - 财政年份:2020
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
HDR TRIPODS: Building the Foundation for a Data-Intensive Studies Center-
HDR TRIPODS:为数据密集型研究中心奠定基础-
- 批准号:
1934553 - 财政年份:2019
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934813 - 财政年份:2019
- 资助金额:
$ 131.05万 - 项目类别:
Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
- 批准号:
1934962 - 财政年份:2019
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
HDR TRIPODS: UIC Foundations of Data Science Institute
HDR TRIPODS:UIC 数据科学研究所基础
- 批准号:
1934915 - 财政年份:2019
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
HDR TRIPODS: Data Science Principles of the Human-Machine Convergence
HDR TRIPODS:人机融合的数据科学原理
- 批准号:
1934924 - 财政年份:2019
- 资助金额:
$ 131.05万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934931 - 财政年份:2019
- 资助金额:
$ 131.05万 - 项目类别:
Standard Grant