RI: Small: Modern Machine Learning Algorithms for Ranking from Pairwise and Higher-Order Comparisons
RI:小型:用于通过成对和高阶比较进行排名的现代机器学习算法
基本信息
- 批准号:1717290
- 负责人:
- 金额:$ 44.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of ranking a large number of items from comparisons among a few items at a time plays a crucial role in many areas, including recommender systems, crowdsourcing, marketing, and econometrics. In modern settings, as the numbers of items to be ranked increase and corresponding datasets grow in size and complexity, it is critical to re-visit the classical algorithms currently used for these problems and to design new algorithms that can better scale to modern needs under fewer assumptions. This project will design modern machine learning algorithms for such problems, while training PhD students and postdoctoral scientists in the interdisciplinary skills needed to design novel machine learning algorithms for problems involving modern datasets. Other broader impacts of the project will also include organization of workshops and/or tutorials to disseminate the results of the research conducted here, survey articles aimed at conveying the ideas to a broad scientific audience, and activities designed to increase participation of under-represented groups in STEM education opportunities and careers. The problem of ranking from pairwise comparisons has been studied in several fields, including statistics, operations research, social choice, and computer science, and several algorithms have been developed; however, very little has been understood in terms of how these different algorithms relate to each other, under what conditions they succeed (or fail), and how insights from one can be used to improve another. Algorithms for ranking from higher-order comparisons are even less well understood. The project will develop a strong understanding of the conditions under which various pairwise ranking algorithms succeed (or fail), and use insights from this understanding to develop modern machine learning algorithms with strong performance guarantees for ranking from pairwise as well as higher-order comparisons. Specifically, the project will investigate the following three directions: (1) Understanding conditions on pairwise models under which current algorithms succeed or fail.(2) Design of new machine learning algorithms for ranking from pairwise comparisons.(3) Ranking from higher-order comparisons.The project will bring a unified perspective to the study of ranking from pairwise comparisons, which hitherto has been scattered across different disciplines; develop new machine learning algorithms that improve the state of the art for a variety of ranking objectives; and initiate a systematic study of ranking from higher-order comparisons, a nascent area at the intersection of machine learning, statistics and econometrics.
一次从几个项目之间的比较中对大量项目进行排名的问题在许多领域中起着至关重要的作用,包括推荐系统,众包,营销和计量经济学。在现代环境中,随着要排名的项目数量的增加以及相应数据集的大小和复杂性的增加,重新访问当前用于这些问题的经典算法并设计新算法至关重要,这些算法可以在更少的假设下更好地扩展到现代需求。该项目将为此类问题设计现代机器学习算法,同时培训博士生和博士后科学家,掌握为涉及现代数据集的问题设计新颖机器学习算法所需的跨学科技能。该项目的其他更广泛的影响还包括组织研讨会和/或教程,以传播在这里进行的研究结果,旨在向广大科学受众传达想法的调查文章,以及旨在增加代表性不足的群体参与STEM教育机会和职业的活动。两两比较的排序问题已经在几个领域进行了研究,包括统计学,运筹学,社会选择和计算机科学,并且已经开发了几种算法;然而,很少有人了解这些不同的算法如何相互关联,在什么条件下它们成功(或失败),以及如何从一个洞察力可以用来改进另一个。从高阶比较中排序的算法甚至更不容易理解。该项目将深入了解各种成对排名算法成功(或失败)的条件,并使用这种理解的见解来开发现代机器学习算法,这些算法具有强大的性能保证,可以从成对和高阶比较中进行排名。具体来说,该项目将研究以下三个方向:(1)了解当前算法成功或失败的成对模型条件。(2)设计新的机器学习算法,从成对比较中进行排名。(3)从高阶比较中进行排序。该项目将为从成对比较中进行排序的研究带来统一的视角,迄今为止,这种研究分散在不同的学科中;开发新的机器学习算法,改进各种排序目标的最新技术水平;并启动对高阶比较排名的系统研究,这是机器学习,统计学和计量经济学交叉的新兴领域。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Choice Bandits
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Arpit Agarwal;Nicholas Johnson;S. Agarwal
- 通讯作者:Arpit Agarwal;Nicholas Johnson;S. Agarwal
Bayes Consistency vs. H-Consistency: The Interplay between Surrogate Loss Functions and the Scoring Function Class
贝叶斯一致性与 H 一致性:代理损失函数和评分函数类之间的相互作用
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zhang, M;Agarwal, S
- 通讯作者:Agarwal, S
Accelerated Spectral Ranking
加速光谱排名
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Patil, Prathamesh;Agarwal, Shivani
- 通讯作者:Agarwal, Shivani
Learning from Noisy Labels with No Change to the Training Process
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mingyuan Zhang;Jane Lee;S. Agarwal
- 通讯作者:Mingyuan Zhang;Jane Lee;S. Agarwal
Rank Aggregation from Pairwise Comparisons in the Presence of Adversarial Corruptions
在存在对抗性腐败的情况下,通过两两比较进行排名聚合
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Agarwal, Shivani;Khanna, Sanjeev;Patil, Prathamesh
- 通讯作者:Patil, Prathamesh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shivani Agarwal其他文献
Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila.
嗜水气单胞菌单体 UDP-半乳糖 4-差向异构酶的活性位点和辅酶结合袋的表征。
- DOI:
10.5483/bmbrep.2010.43.6.419 - 发表时间:
2010 - 期刊:
- 影响因子:3.8
- 作者:
Shivani Agarwal;N. Mishra;Shivangi Agarwal;A. Dixit - 通讯作者:
A. Dixit
Correlation between the milling time and hydrogen storage properties of ZrCrFe ternary alloy
- DOI:
10.1016/j.ijhydene.2009.12.010 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
Ankur Jain;Shivani Agarwal;Devendra Vyas;Pragya Jain;I.P. Jain - 通讯作者:
I.P. Jain
Milling induced surface modification of V-based catalyst to improve sorption kinetics of KSiHsub3/sub: An XPS investigation
- DOI:
10.1016/j.ijhydene.2022.04.083 - 发表时间:
2022-12-25 - 期刊:
- 影响因子:8.300
- 作者:
Shashi Sharma;Rini Singh;Takayuki Ichikawa;Ankur Jain;Shivani Agarwal - 通讯作者:
Shivani Agarwal
Significance of Hydrogen as Economic and Environmentally Friendly Fuel
氢作为经济环保燃料的意义
- DOI:
10.3390/en14217389 - 发表时间:
2021 - 期刊:
- 影响因子:3.2
- 作者:
Shivanshu Sharma;Shivani Agarwal;Ankur Jain - 通讯作者:
Ankur Jain
Malicious behavior identification using Dual Attention Based dense bi-directional gated recurrent network in the cloud computing environment
云计算环境中基于双重注意力的密集双向门控循环网络的恶意行为识别
- DOI:
10.1016/j.cose.2025.104418 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:5.400
- 作者:
Nandita Goyal;Kanika Taneja;Shivani Agarwal;Harsh Khatter - 通讯作者:
Harsh Khatter
Shivani Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shivani Agarwal', 18)}}的其他基金
HDR TRIPODS: Penn Institute for Foundations of Data Science
HDR TRIPODS:宾夕法尼亚大学数据科学研究所
- 批准号:
1934876 - 财政年份:2019
- 资助金额:
$ 44.55万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
CNS: CORE: Small: Scaling Graph Machine Learning Workloads on Modern Storage
CNS:核心:小型:在现代存储上扩展图机器学习工作负载
- 批准号:
2237193 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
SHF: Small: K-Way Speculation for Mapping Applications with Dependencies on Modern HPC Systems
SHF:小型:依赖现代 HPC 系统的地图应用程序的 K-Way 推测
- 批准号:
2334273 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Beat Modern Virtualization Obfuscation at Their Own Game: A Bottom-Up Deobfuscation Approach
SaTC:核心:小型:在自己的游戏中击败现代虚拟化混淆:自下而上的反混淆方法
- 批准号:
2211905 - 财政年份:2023
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
A Study of Kabuki Music for Small Theatre Performances in the Modern Era: the Case Study of Tokyo from the Late Taisho to the Early Showa Periods
近代小剧场歌舞伎音乐研究——以大正末期至昭和初期的东京为例
- 批准号:
22K00130 - 财政年份:2022
- 资助金额:
$ 44.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The birth and contemporary role of "small square" in the planning history of modern Spanish
“小广场”在西班牙现代规划史上的诞生及其当代作用
- 批准号:
22K04482 - 财政年份:2022
- 资助金额:
$ 44.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CIF: Small: Load Balancing for Cloud Networks: Data Locality Issues and Modern Algorithms
CIF:小型:云网络的负载平衡:数据局部性问题和现代算法
- 批准号:
2113027 - 财政年份:2021
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning
合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习
- 批准号:
2124393 - 财政年份:2021
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant
AF: Small: Algorithm and Incentive Design for Modern Resource Allocation Platforms
AF:小:现代资源配置平台的算法和激励设计
- 批准号:
2113798 - 财政年份:2021
- 资助金额:
$ 44.55万 - 项目类别:
Standard Grant