Convergence Accelerator Phase I (RAISE): Analytics-Driven Accessible Pathways To Impacts-Validated Education (ADAPTIVE)
融合加速器第一阶段 (RAISE):分析驱动的无障碍途径,实现影响力验证的教育 (ADAPTIVE)
基本信息
- 批准号:1936656
- 负责人:
- 金额:$ 99.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefit of this Convergence Accelerator Phase I project is the development of powerful, data-driven tools to support the tens of millions of US workers whose jobs are being transformed by Artificial Intelligence (AI) and automation. Our nation's economic competitiveness and social fabric depend on how well we prepare individuals for this transformation via career-relevant skills development. Yet, with ever-changing job skill requirements and the proliferation of online training options, lifelong learners are facing a growing information gap. To address this, in Phase I, we will develop and pilot test meaningful data visualizations and analytics about the relevance and efficacy of available learning opportunities and credentials to help learners make informed, labor market aligned reskilling choices. In Phase II, the project will develop a career recommender "GPS" platform. Incorporating learning analytics and outcomes data from thousands of course and credential offerings and real-time labor market data, the platform will provide equitable access to decision support to US workers across a lifetime of learning and skill development. The team is comprised of data and learning scientists, economists, education researchers, and course designers. Partners include The Boeing Company, Burning Glass Technologies, and O*Net. This Convergence Accelerator Phase I project advances understanding of "learning in the flow of work" and develops new data-rich tools to help learners and education providers navigate the rapidly changing labor market. It will demonstrate how labor market and course syllabi data, learning analytics, and insights on transferability of learned skills can be combined and visualized in novel ways to support a learner's decision-making about, sustained engagement in, and application to their job of professional skills acquired through education and job-related training. Instructors and course developers can also apply these data-driven insights to support faster revision cycles and better alignment of courses with ever-changing labor market skill demands. Three convergent lines of research and development are proposed: (1) Development of a Design-Based Research paradigm coupled with innovative Learning Analytics (DBR+LA) to study, evaluate, and improve courses; (2) Application of DBR+LA to assess the effectiveness and suggest improvements for courses that teach critical skills. (3) Data mining, modeling, and visualization of millions of job postings and course syllabi to identify gaps in current skill supply and demand and early identification of emerging high demand skills resulting in a "reskilling recommender system" to guide lifelong learning choices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持基于团队的多学科努力,以应对国家重要性的挑战,并在不久的将来显示出交付成果的潜力。融合加速器第一阶段项目的更广泛影响/潜在好处是开发强大的数据驱动工具,以支持数千万美国工人,他们的工作正在被人工智能(AI)和自动化转变。我们国家的经济竞争力和社会结构取决于我们通过与职业相关的技能发展为这种转变做好准备的程度。然而,随着工作技能要求的不断变化和在线培训选项的激增,终身学习者正面临着越来越大的信息鸿沟。为了解决这一问题,在第一阶段,我们将开发并试点测试关于可用学习机会和证书的相关性和有效性的有意义的数据可视化和分析,以帮助学习者做出知情的、与劳动力市场一致的再技能选择。在第二阶段,该项目将开发一个职业推荐器“GPS”平台。该平台整合了来自数千门课程和证书提供的学习分析和结果数据以及实时劳动力市场数据,将为美国工人在终身学习和技能发展过程中提供公平的决策支持。该团队由数据和学习科学家、经济学家、教育研究人员和课程设计师组成。合作伙伴包括波音公司、Burning Glass Technologies和O*Net。这一融合加速器第一阶段项目增进了对“在工作流程中学习”的理解,并开发了新的数据丰富的工具,以帮助学习者和教育提供商在快速变化的劳动力市场中导航。它将展示劳动力市场和课程大纲数据、学习分析和对所学技能可转移性的洞察如何以新颖的方式结合和可视化,以支持学习者关于通过教育和与工作相关的培训获得的专业技能的决策、持续参与和应用。教师和课程开发人员还可以应用这些数据驱动的见解来支持更快的修订周期,并根据不断变化的劳动力市场技能需求更好地调整课程。研究和开发的三条趋同路线被提出:(1)发展基于设计的研究范式和创新学习分析(DBR+LA)来研究、评估和改进课程;(2)应用DBR+LA来评估教授关键技能的课程的有效性并提出改进建议。(3)对数以百万计的招聘信息和课程大纲进行数据挖掘、建模和可视化,以找出当前技能供求中的差距,并及早识别新兴的高需求技能,从而产生一个指导终身学习选择的“重新技能推荐系统”。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katy Borner其他文献
Enabling Global Image Data Sharing in the Life Sciences
实现生命科学领域的全球图像数据共享
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. Bajcsy;S. Bhattiprolu;Katy Borner;Beth A. Cimini;Lucy Collinson;Jan Ellenberg;R. Fiolka;Maryellen Giger;W. Goscinski;Matthew Hartley;Nathan A Hotaling;Rick Horwitz;Florian Jug;A. Kreshuk;Emma Lundberg;Aastha Mathur;Kedar Narayan;Shuichi Onami;A.L Plant;Fred Prior;Jason Swedlow;Adam Taylor;Antje Keppler - 通讯作者:
Antje Keppler
Katy Borner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katy Borner', 18)}}的其他基金
TRIPODS+X:RES:Collaborative Research: Multi-Level Graph Representation for Exploring Big Data
TRIPODS X:RES:协作研究:探索大数据的多级图表示
- 批准号:
1839167 - 财政年份:2018
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Data Visualization Literacy: Research and Tools that Advance Public Understanding of Scientific Data
数据可视化素养:促进公众对科学数据理解的研究和工具
- 批准号:
1713567 - 财政年份:2017
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Conference: SciSIP Conference on Modelling Science, Technology, and Innovation, May 2016
会议:SciSIP 科学、技术和创新建模会议,2016 年 5 月
- 批准号:
1546824 - 财政年份:2015
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
NSF Workshop on Knowledge Management and Visualization Tools in Support of Discovery
NSF 知识管理和可视化工具支持发现研讨会
- 批准号:
0750993 - 财政年份:2008
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
TLS: Towards a Macroscope for Science Policy Decision Making
TLS:走向科学政策决策的宏观视野
- 批准号:
0738111 - 财政年份:2008
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
SGER: Collaborative Research: Mapping the Structure and Evolution of Sustainability Science Research
SGER:协作研究:绘制可持续发展科学研究的结构和演变
- 批准号:
0831636 - 财政年份:2008
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
III: "Visualizing Network Dynamics" -- Competition at the International Conference on Network Science 2007
三:“可视化网络动态”——2007年网络科学国际会议竞赛
- 批准号:
0724282 - 财政年份:2007
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Creative Metaphors to Stimulate New Approaches to Visualizing, Understanding, and Rethinking Large Repositories of Scholarly Data
创造性隐喻激发可视化、理解和重新思考大型学术数据存储库的新方法
- 批准号:
0715303 - 财政年份:2007
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Mapping Science Exhibit at the 233rd National Meeting & Exposition of the American Chemical Society in Chicago, IL
第233届全国测绘科学大会展览
- 批准号:
0723989 - 财政年份:2007
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
相似国自然基金
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
- 批准号:
2344877 - 财政年份:2023
- 资助金额:
$ 99.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
- 批准号:
2345069 - 财政年份:2023
- 资助金额:
$ 99.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
- 批准号:
2345176 - 财政年份:2023
- 资助金额:
$ 99.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
- 批准号:
2345052 - 财政年份:2023
- 资助金额:
$ 99.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
- 批准号:
2345039 - 财政年份:2023
- 资助金额:
$ 99.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
- 批准号:
2345139 - 财政年份:2023
- 资助金额:
$ 99.5万 - 项目类别:
Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
- 批准号:
1937033 - 财政年份:2019
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
- 批准号:
1937019 - 财政年份:2019
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
- 批准号:
1937061 - 财政年份:2019
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
- 批准号:
1937068 - 财政年份:2019
- 资助金额:
$ 99.5万 - 项目类别:
Standard Grant