AMPS: Real-Time Algorithms for Power System Analysis: Anomaly, Causality, and Contingency
AMPS:电力系统分析实时算法:异常、因果关系和意外事件
基本信息
- 批准号:1936873
- 负责人:
- 金额:$ 10.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A large-scale blackout in power systems would result in millions of dollars in revenue loss. It interrupts businesses, and even poses risks to environment and public safety. Protecting power systems from large-scale outages is no doubt a top priority. Early detection of random component failures and prediction of cascading failures are critical to the prevention of large-scale blackouts, but they can be achieved only when the power grid is equipped with adequate capability for system understanding, situational awareness, and emergency response. Modern power systems are becoming increasingly complex with the addition of a variety of active controllers, renewable energy resources and storages. With the complexity and uncertainty involved, traditional approaches based on intensive computation to solve a system of model equations are no longer suitable for real-time analysis and control. One graduate student will be support in year 1 of this award.In this project, we leverage recent advances in data science to improve power systems reliability, security, and resilience. In particular we propose to use deep neural networks and data-driven uncertainty quantification, to advance the core algorithms pertaining to the analysis and control of power systems. The proposed work includes three major thrusts: (1) real-time power flow analysis, (2) real-time anomaly detection and causal analysis, and (3) real-time contingency analysis and optimal emergency control. The project is expected to make a significant breakthrough in reliable energy delivery. It will not only benefit the power system research and operation, but also advance data science research by promoting physical law-assisted machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力系统的大规模停电将导致数百万美元的收入损失。它中断了业务,甚至对环境和公共安全构成威胁。保护电力系统免受大规模停电无疑是当务之急。随机组件故障的早期检测和级联故障的预测对于防止大规模停电至关重要,但只有当电网具备足够的系统理解、态势感知和应急响应能力时,才能实现这些目标。随着各种有源控制器、可再生能源和储能系统的加入,现代电力系统正变得越来越复杂。由于系统的复杂性和不确定性,传统的基于密集计算的模型方程求解方法已不适合实时分析和控制。一名研究生将在该奖项的第一年获得资助。在这个项目中,我们利用数据科学的最新进展来提高电力系统的可靠性、安全性和弹性。我们特别建议使用深度神经网络和数据驱动的不确定性量化来推进与电力系统分析和控制相关的核心算法。提出的工作包括三个重点:(1)实时潮流分析;(2)实时异常检测和原因分析;(3)实时应急分析和最优应急控制。该项目有望在可靠的能源输送方面取得重大突破。它不仅有利于电力系统的研究和运行,而且通过推动物理定律辅助机器学习,推动数据科学研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Convolutional Neural Networks for Power Line Outage Identification
用于电力线断电识别的图卷积神经网络
- DOI:10.1109/icpr48806.2021.9413093
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:He, Jia;Cheng, Maggie
- 通讯作者:Cheng, Maggie
Machine learning methods for power line outage identification
电力线路断电识别的机器学习方法
- DOI:10.1016/j.tej.2020.106885
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:He, Jia;Cheng, Maggie X.
- 通讯作者:Cheng, Maggie X.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maggie Cheng其他文献
Fast OMP for Exact Recovery and Sparse Approximation
用于精确恢复和稀疏逼近的快速 OMP
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Huiyuan Yu;Jia He;Maggie Cheng - 通讯作者:
Maggie Cheng
“This is not built for me”: A qualitative study of adult-sized changing tables and public restroom accessibility
- DOI:
10.1016/j.dhjo.2023.101520 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Geffen Treiman;Maggie Cheng;Madeline Oswald - 通讯作者:
Madeline Oswald
Inconsistent values and algorithmic fairness: a review of organ allocation priority systems in the United States
- DOI:
10.1186/s12910-024-01116-x - 发表时间:
2024-10-17 - 期刊:
- 影响因子:3.100
- 作者:
Reid Dale;Maggie Cheng;Katharine Casselman Pines;Maria Elizabeth Currie - 通讯作者:
Maria Elizabeth Currie
Maggie Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maggie Cheng', 18)}}的其他基金
ATD: Collaborative Research: Inference of Human Dynamics from High-Dimensional Data Streams: Community Discovery and Change Detection
ATD:协作研究:从高维数据流推断人类动力学:社区发现和变化检测
- 批准号:
2027725 - 财政年份:2020
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
EAGER: Factoring User Behavior into Network Security Analysis
EAGER:将用户行为纳入网络安全分析
- 批准号:
1937929 - 财政年份:2019
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
- 批准号:
1854078 - 财政年份:2018
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
CPS:Synergy:Collaborative Research: Real-time Data Analytics for Energy Cyber-Physical Systems
CPS:协同:协作研究:能源网络物理系统的实时数据分析
- 批准号:
1854077 - 财政年份:2018
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
- 批准号:
1665422 - 财政年份:2016
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
CPS:Synergy:Collaborative Research: Real-time Data Analytics for Energy Cyber-Physical Systems
CPS:协同:协作研究:能源网络物理系统的实时数据分析
- 批准号:
1660025 - 财政年份:2016
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
EAGER: Factoring User Behavior into Network Security Analysis
EAGER:将用户行为纳入网络安全分析
- 批准号:
1665235 - 财政年份:2016
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
EAGER: Factoring User Behavior into Network Security Analysis
EAGER:将用户行为纳入网络安全分析
- 批准号:
1537538 - 财政年份:2015
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
CPS:Synergy:Collaborative Research: Real-time Data Analytics for Energy Cyber-Physical Systems
CPS:协同:协作研究:能源网络物理系统的实时数据分析
- 批准号:
1545063 - 财政年份:2015
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
- 批准号:
1307458 - 财政年份:2013
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 10.92万 - 项目类别:
Studentship
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
- 批准号:
10103131 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
EU-Funded
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound
I-Corps:实时超声同步肌肉骨骼评估的转化潜力
- 批准号:
2413735 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant