ATD: Collaborative Research: Inference of Human Dynamics from High-Dimensional Data Streams: Community Discovery and Change Detection

ATD:协作研究:从高维数据流推断人类动力学:社区发现和变化检测

基本信息

  • 批准号:
    2027725
  • 负责人:
  • 金额:
    $ 15.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In the mobile and big data era, data on human mobility and interaction in both physical space and virtual space are pervasively available. The study of human dynamics with the assistance of big data analytics becomes a timely effort. The outcome from this study helps understand how human activities change over time and how they may change the environment, economy, and politics. At the micro scale, research on communities, influence propagation, anomaly detection, and mobility prediction can benefit marketing research, mitigate crimes, as well as mitigate and contain epidemics. Therefore, this project will advance not only mathematics and statistics, but also many other fields including human geography, business, and public health. The project aims to analyze multi-relational data in large spatiotemporal datasets, and covers a broad range of topics pertaining to the study of human dynamics, including anomaly detection, trend discovery, hidden community detection, pattern mining, and role prediction, etc. The types of data analysis covers statistical inference on both unstructured data and structured data that are supported on a graph. The work includes four major thrusts: 1) latent network estimation from non-stationary time series, 2) online change-point detection and synchronization testing for high-dimensional time series, 3) multi-relational data analysis based on tensor factorization and validity testing, and 4) spatial and spectral analysis of graph signals. These research projects will contribute to not only time series analysis, tensor analysis, and graph signal processing, but also machine learning from large spatiotemporal datasets. The synergy between the three areas and machine learning enables powerful methodologies for modeling multi-relational data and mining data defined on both regular and irregular structures. This research will result in theoretical foundations underpinning time series and dynamic complex networks as well as practical software tools for a broad range of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在移动的和大数据时代,有关物理空间和虚拟空间中人类移动和交互的数据随处可见。在大数据分析的帮助下研究人类动力学成为一项及时的努力。这项研究的结果有助于了解人类活动如何随着时间的推移而变化,以及它们如何改变环境,经济和政治。在微观层面上,对社区、影响力传播、异常检测和移动性预测的研究可以有益于营销研究,减少犯罪,以及减轻和遏制流行病。因此,该项目不仅将促进数学和统计学,还将促进人文地理学、商业和公共卫生等许多其他领域的发展。该项目旨在分析大型时空数据集中的多关系数据,并涵盖了与人类动力学研究相关的广泛主题,包括异常检测,趋势发现,隐藏社区检测,模式挖掘和角色预测等。数据分析的类型涵盖了图上支持的非结构化数据和结构化数据的统计推断。主要工作包括4个方面:1)非平稳时间序列的潜在网络估计; 2)高维时间序列的在线变点检测和同步检验; 3)基于张量分解的多关系数据分析和有效性检验; 4)图形信号的空间和谱分析。这些研究项目不仅有助于时间序列分析,张量分析和图形信号处理,还有助于从大型时空数据集进行机器学习。这三个领域和机器学习之间的协同作用使强大的方法能够对多关系数据进行建模,并挖掘在规则和不规则结构上定义的数据。这项研究将为时间序列和动态复杂网络提供理论基础,并为广泛的应用提供实用的软件工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maggie Cheng其他文献

Fast OMP for Exact Recovery and Sparse Approximation
用于精确恢复和稀疏逼近的快速 OMP
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huiyuan Yu;Jia He;Maggie Cheng
  • 通讯作者:
    Maggie Cheng
Inconsistent values and algorithmic fairness: a review of organ allocation priority systems in the United States
  • DOI:
    10.1186/s12910-024-01116-x
  • 发表时间:
    2024-10-17
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Reid Dale;Maggie Cheng;Katharine Casselman Pines;Maria Elizabeth Currie
  • 通讯作者:
    Maria Elizabeth Currie
“This is not built for me”: A qualitative study of adult-sized changing tables and public restroom accessibility
  • DOI:
    10.1016/j.dhjo.2023.101520
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geffen Treiman;Maggie Cheng;Madeline Oswald
  • 通讯作者:
    Madeline Oswald

Maggie Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maggie Cheng', 18)}}的其他基金

AMPS: Real-Time Algorithms for Power System Analysis: Anomaly, Causality, and Contingency
AMPS:电力系统分析实时算法:异常、因果关系和意外事件
  • 批准号:
    1936873
  • 财政年份:
    2019
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
EAGER: Factoring User Behavior into Network Security Analysis
EAGER:将用户行为纳入网络安全分析
  • 批准号:
    1937929
  • 财政年份:
    2019
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
  • 批准号:
    1854078
  • 财政年份:
    2018
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
CPS:Synergy:Collaborative Research: Real-time Data Analytics for Energy Cyber-Physical Systems
CPS:协同:协作研究:能源网络物理系统的实时数据分析
  • 批准号:
    1854077
  • 财政年份:
    2018
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
  • 批准号:
    1665422
  • 财政年份:
    2016
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
CPS:Synergy:Collaborative Research: Real-time Data Analytics for Energy Cyber-Physical Systems
CPS:协同:协作研究:能源网络物理系统的实时数据分析
  • 批准号:
    1660025
  • 财政年份:
    2016
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
EAGER: Factoring User Behavior into Network Security Analysis
EAGER:将用户行为纳入网络安全分析
  • 批准号:
    1665235
  • 财政年份:
    2016
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
EAGER: Factoring User Behavior into Network Security Analysis
EAGER:将用户行为纳入网络安全分析
  • 批准号:
    1537538
  • 财政年份:
    2015
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
CPS:Synergy:Collaborative Research: Real-time Data Analytics for Energy Cyber-Physical Systems
CPS:协同:协作研究:能源网络物理系统的实时数据分析
  • 批准号:
    1545063
  • 财政年份:
    2015
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
  • 批准号:
    1307458
  • 财政年份:
    2013
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了