Convergence Accelerator Phase I (RAISE): Learning Environments with Advanced Robotics for Next-Generation Emergency Responders (LEARNER)

融合加速器第一阶段 (RAISE):为下一代紧急响应人员提供先进机器人技术的学习环境 (LEARNER)

基本信息

项目摘要

The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefit of this Convergence Accelerator Phase I project is to generate technology-based solutions that can support and augment the performance and safety of emergency response (ER) personnel. Academic researchers, core-technology developers, stakeholders and an advisory board constituted of leaders from industry and government will come together to assess opportunities and challenges related to the use of human augmentation technologies that can transform the process of foundational, use-inspired solution-finding for ER work, and in a way that is transferable to other work contexts as well. This will involve the development of technology prototypes including semi-autonomous ground robots, wearable robots (powered exoskeletons) and augmented reality interfaces tailored for ER work; and building and evaluating a mixed-reality learning environment with physical, augmented, and virtual reality components, for users to learn to work effectively with multiple augmentation technologies. Our effort will also contribute to better conceptualization of convergence research and serve as a model for other research communities that can benefit from working across traditional disciplinary boundaries in engineering and computer science. We will share our methods, learnings and findings with the ER community and the wider world through an open-source knowledge sharing platform and appropriate dissemination channels. This Convergence Accelerator Phase I project will significantly advance ER operations and training through the development and prototyping of an adaptive, personalized mixed-reality learning platform that enables integrating advanced technologies for human augmentation in ER work, and the creation of principled human-robot team strategies. Our work will substantially advance the knowledge and state-of-the-art in exoskeleton control, human-robot interaction, and human-computer interaction through use-inspired technology design and development of adaptive human-in-the-loop control to facilitate learning. Furthermore, an opportunity to field these technologies and develop effective learning platforms has significant transformative potential as semi-autonomous ground robots, exoskeletons and AR will enable users to formulate fundamentally new work strategies at the individual and team levels that are only afforded by their newly extended physical and perceptual capabilities. Finally, our work will advance learning by creating a replicable platform that increases the speed for the integration of innovative and emerging technologies for training future worker. Our transdisciplinary approach combines and enhances the existing knowledge from the disciplines of learning science, computer science, virtual and augmented realities, human factors, cognitive psychology, and systems engineering to create a framework that integrates training course design, innovative and emerging technology implementation, and new techniques of work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,以应对国家重要性的挑战,并在不久的将来展示可交付成果的潜力。 这个融合加速器第一阶段项目的更广泛的影响/潜在好处是生成基于技术的解决方案,可以支持和增强应急响应(ER)人员的性能和安全。学术研究人员,核心技术开发人员,利益相关者和由行业和政府领导人组成的咨询委员会将聚集在一起,评估与使用人类增强技术相关的机遇和挑战,这些技术可以改变ER工作的基础,使用启发的解决方案寻找过程,并以一种可转移到其他工作环境的方式。这将涉及技术原型的开发,包括半自主地面机器人,可穿戴机器人(动力外骨骼)和为ER工作量身定制的增强现实接口;以及构建和评估具有物理,增强和虚拟现实组件的混合现实学习环境,让用户学习有效地使用多种增强技术。我们的努力也将有助于更好地融合研究的概念化,并作为其他研究社区的典范,这些研究社区可以从工程和计算机科学的传统学科界限中受益。我们将通过开源知识共享平台和适当的传播渠道与ER社区和更广泛的世界分享我们的方法,学习和发现。这个融合加速器第一阶段项目将通过开发和原型设计一个自适应的,个性化的混合现实学习平台来显着推进ER运营和培训,该平台能够将先进的人类增强技术集成到ER工作中,并创建有原则的人类-机器人团队战略。我们的工作将通过使用启发的技术设计和自适应人在回路控制的开发来促进学习,从而大大推进外骨骼控制,人机交互和人机交互方面的知识和最新技术。此外,有机会将这些技术付诸实践并开发有效的学习平台具有巨大的变革潜力,因为半自主地面机器人,外骨骼和AR将使用户能够在个人和团队层面制定全新的工作策略,而这些策略只能由他们新扩展的物理和感知能力提供。最后,我们的工作将通过创建一个可复制的平台来促进学习,该平台将加快创新和新兴技术的整合速度,以培训未来的工人。我们的跨学科方法结合并增强了学习科学,计算机科学,虚拟和增强现实,人为因素,认知心理学和系统工程等学科的现有知识,以创建一个整合培训课程设计,创新和新兴技术实施,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disaster Ergonomics: Human Factors in COVID-19 Pandemic Emergency Management
  • DOI:
    10.1177/0018720820939428
  • 发表时间:
    2020-07-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Sasangohar, Farzan;Moats, Jason;Peres, S. Camille
  • 通讯作者:
    Peres, S. Camille
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Gabbard其他文献

Joseph Gabbard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Gabbard', 18)}}的其他基金

CHS: SMALL: Methods to Assess Automotive Augmented Reality Head-up Display Effects on Driver Performance
CHS:SMALL:评估汽车增强现实平视显示对驾驶员性能影响的方法
  • 批准号:
    1816721
  • 财政年份:
    2018
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
CHS: Small: Understanding Human Performance Consequences of Using Headworn Displays for Large Assemblies
CHS:小型:了解在大型组件中使用头戴式显示器对人类表现的影响
  • 批准号:
    1718051
  • 财政年份:
    2017
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant

相似国自然基金

大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
  • 批准号:
    2344877
  • 财政年份:
    2023
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
  • 批准号:
    2345069
  • 财政年份:
    2023
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
  • 批准号:
    2345176
  • 财政年份:
    2023
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
  • 批准号:
    2345052
  • 财政年份:
    2023
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
  • 批准号:
    2345039
  • 财政年份:
    2023
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
  • 批准号:
    2345139
  • 财政年份:
    2023
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
  • 批准号:
    1937033
  • 财政年份:
    2019
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
  • 批准号:
    1937019
  • 财政年份:
    2019
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
  • 批准号:
    1937061
  • 财政年份:
    2019
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
  • 批准号:
    1937068
  • 财政年份:
    2019
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了