CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements

职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强

基本信息

  • 批准号:
    1937787
  • 负责人:
  • 金额:
    $ 37.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The goal of this project is to make graph-based security analytics practical and robust. General-purpose graph algorithms and graph-based machine learning methods have had some success when applied to a number of security problems ranging from detecting malicious websites and compromised devices in computer networks to detecting compromised or inauthentic accounts in social networks. However, because the existing methods are designed for generic contexts rather than for specific security problems, there is room to improve their performance in detecting bad actors in networks. Further, in security contexts, there is often a determined adversary trying to evade detection that general-purpose algorithms are not designed to consider, which makes them vulnerable to attack. This project will develop novel graph inference algorithms that consider unique characteristics of security problems, analyze the spectrum of possible attacks on such algorithms, define measures of their robustness against attack, and develop methods to improve their robustness. The project team will create and share datasets related to graph-based security analytics along with software that implements their algorithms and robustness measures with both industrial practitioners and other researchers. They will also mentor undergraduate and graduate students in the research, using the problems and data to support new college courses and Science, Technology, Engineering, and Mathematics (STEM) outreach activities for K-12 students.The work focuses on collective classification algorithms that simultaneously label all nodes in a network as malicious or benign. The first main research thrust involves advancing analytic techniques that combine random walk and loopy belief propagation-based algorithms through local rules that model the joint probabilities of a given node and its neighbors being malicious. To do this, the team will develop versions of the algorithms that relax assumptions that neighboring nodes have strong homophily, developing characterizations of neighboring nodes' relationships and creating novel Markov Random Field formulations that leverage these characterizations. The second research thrust will model the attack surface of collective classification algorithms, characterizing the goals and capabilities of attackers, the cost of evasive moves such as creating nodes or edges and generating network activity, and the effect of different goals, capabilities, and levels of evasion on the algorithms' performance. The third thrust will be to develop methods to identify such evasion by developing attacker-resistant link prediction algorithms and similarity metrics, then mitigate evasion efforts through developing local rule-based techniques that add noise to graphs in ways that confound attacks. The team will evaluate the metrics and algorithms on datasets from a number of domains, including malicious users in social networks, malicious URLs in the web graph, malicious domains embedded in domain name service redirects, and malicious orders in an e-commerce marketplace. These problems, and the associated datasets, will be integrated into an existing course on data-driven security and a new graduate seminar course on collective classification. Results from all activities will be used as cases and materials in both existing and new courses, as well as a K-12 summer program and cybersecurity competition organized around detecting malicious actors in networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是使基于图的安全分析实用且强大。 通用图算法和基于图的机器学习方法在应用于从检测计算机网络中的恶意网站和受损设备到检测社交网络中的受损或不真实账户的许多安全问题时已经取得了一些成功。 然而,由于现有的方法是专为通用的情况下,而不是特定的安全问题,有空间来提高其性能检测网络中的不良行为者。 此外,在安全环境中,通常有一个坚定的对手试图逃避检测,通用算法的设计不考虑,这使得他们容易受到攻击。 该项目将开发新的图推理算法,考虑到安全问题的独特特征,分析对这些算法的可能攻击的频谱,定义其对攻击的鲁棒性的措施,并开发提高其鲁棒性的方法。 该项目团队将创建和共享与基于图形的安全分析相关的数据集,沿着软件,该软件可与行业从业者和其他研究人员实现其算法和鲁棒性措施。 他们还将指导研究中的本科生和研究生,利用问题和数据支持新的大学课程和K-12学生的科学,技术,工程和数学(STEM)外展活动。这项工作的重点是集体分类算法,同时将网络中的所有节点标记为恶意或良性。 第一个主要的研究重点涉及先进的分析技术,结合联合收割机随机游走和循环的信念传播为基础的算法,通过本地规则,模型的联合概率给定的节点和它的邻居是恶意的。 为此,该团队将开发算法的版本,放松相邻节点具有强同质性的假设,开发相邻节点关系的特征,并创建利用这些特征的新型马尔可夫随机场公式。 第二个研究重点将对集体分类算法的攻击面进行建模,描述攻击者的目标和能力、创建节点或边和生成网络活动等规避行动的成本,以及不同目标、能力和水平的影响。规避对算法性能的影响。 第三个重点将是通过开发抗攻击的链接预测算法和相似性度量来开发识别这种规避的方法,然后通过开发基于本地规则的技术来减轻规避工作,这些技术以混淆攻击的方式向图形添加噪声。 该团队将评估来自多个领域的数据集的指标和算法,包括社交网络中的恶意用户、网络图中的恶意URL、嵌入域名服务重定向中的恶意域名以及电子商务市场中的恶意订单。 这些问题和相关的数据集将被纳入现有的数据驱动安全课程和新的集体分类研究生研讨会课程。所有活动的结果将被用作现有课程和新课程的案例和材料,以及K-12夏季计划和围绕检测网络中的恶意行为者组织的网络安全竞赛。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evading Watermark based Detection of AI-Generated Content
Stealing Links from Graph Neural Networks
  • DOI:
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinlei He;Jinyuan Jia;M. Backes;N. Gong;Yang Zhang
  • 通讯作者:
    Xinlei He;Jinyuan Jia;M. Backes;N. Gong;Yang Zhang
Backdoor Attacks to Graph Neural Networks
Certified Robustness of Community Detection against Adversarial Structural Perturbation via Randomized Smoothing
  • DOI:
    10.1145/3366423.3380029
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinyuan Jia;Binghui Wang;Xiaoyu Cao;N. Gong
  • 通讯作者:
    Jinyuan Jia;Binghui Wang;Xiaoyu Cao;N. Gong
Certified Robustness of Graph Neural Networks against Adversarial Structural Perturbation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Gong其他文献

Is the Ethnographic Fact Conquered or Co-Constructed?
  • DOI:
    10.1007/s11133-025-09601-4
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Neil Gong
  • 通讯作者:
    Neil Gong
Between Tolerant Containment and Concerted Constraint: Managing Madness for the City and the Privileged Family
  • DOI:
    10.1177/0003122419859533
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Neil Gong
  • 通讯作者:
    Neil Gong
Securing the Future of GenAI: Policy and Technology
确保 GenAI 的未来:政策和技术
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Christodorescu;Google Ryan;Craven;S. Feizi;Neil Gong;Mia Hoffmann;Somesh Jha;Zhengyuan Jiang;Mehrdad Saberi Kamarposhti;John Mitchell;Jessica Newman;Emelia Probasco;Yanjun Qi;Khawaja Shams;Google Matthew;Turek
  • 通讯作者:
    Turek
“That proves you mad, because you know it not”: impaired insight and the dilemma of governing psychiatric patients as legal subjects
“这证明你疯了,因为你不知道”:洞察力受损和将精神病患者作为法律主体进行治理的困境
  • DOI:
    10.1007/s11186-017-9288-0
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Neil Gong
  • 通讯作者:
    Neil Gong

Neil Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Gong', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Towards Secure Federated Learning
协作研究:SaTC:核心:中:迈向安全的联邦学习
  • 批准号:
    2131859
  • 财政年份:
    2022
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Recommender Systems against Data Poisoning Attacks
协作研究:SaTC:核心:小型:保护推荐系统免受数据中毒攻击
  • 批准号:
    2125977
  • 财政年份:
    2022
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
  • 批准号:
    1937786
  • 财政年份:
    2019
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements
职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强
  • 批准号:
    1750198
  • 财政年份:
    2018
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
  • 批准号:
    1801584
  • 财政年份:
    2018
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平面三角剖分flip graph的强凸性研究
  • 批准号:
    12301432
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于graph的多对比度磁共振图像重建方法
  • 批准号:
    61901188
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
  • 批准号:
    61771009
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Graph和ISA的红外目标分割与识别方法研究
  • 批准号:
    61101246
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中国Web Graph的挖掘与应用研究
  • 批准号:
    60473122
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
  • 批准号:
    2301397
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Standard Grant
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Graph-based Methodology for Modeling the Nucleation of Weak Electrolytes
基于图形的弱电解质成核建模方法
  • 批准号:
    2317787
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Continuing Grant
Taking the structure of proteins into account: predicting if infections are resistant to B-lactam antibiotics using graph-based convolutional neural n
考虑蛋白质的结构:使用基于图的卷积神经网络预测感染是否对 B-内酰胺抗生素具有耐药性
  • 批准号:
    2886022
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Studentship
Automatic Methods for Knowledge Graph Construction using Ontology-based Context Management
使用基于本体的上下文管理的知识图谱自动构建方法
  • 批准号:
    23H03462
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
  • 批准号:
    10816929
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
Realization of Graph Neural SLAM, a next-generation SLAM technology based on knowledge-intensive maps
基于知识密集型地图的下一代SLAM技术Graph Neural SLAM的实现
  • 批准号:
    23K11270
  • 财政年份:
    2023
  • 资助金额:
    $ 37.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了