Collaborative Research: SaTC: CORE: Small: Securing Recommender Systems against Data Poisoning Attacks
协作研究:SaTC:核心:小型:保护推荐系统免受数据中毒攻击
基本信息
- 批准号:2125977
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to build secure recommender systems against data poisoning attacks. Recommender systems are common online, suggesting movies, products, news, and many other kinds of items in order to help people find things they are interested in and make decisions. The influence recommender systems have on people's behavior, however, makes them attractive targets: attackers can create fake users who rate items in ways that lead the system to recommend products that are more in the attackers' interests than the users'. These "data poisoning" attacks threaten the integrity of recommender systems, harming both the companies and people that use them. This proposal will develop methods to detect, limit, and recover from the damage of data poisoning attacks, making recommender systems more resistant to manipulation by bad actors and thus more trustable and useful; the methods will also be incorporated into students' coursework and research work, training a next generation of computer scientists to build more robust machine learning systems.The project is structured around three main aims. Task 1 involves systematically investigating the security vulnerabilities of recommender systems against data poisoning attacks where attackers have varying levels of knowledge about the algorithms and datasets. In task 2 the team will develop new recommendation algorithms that provably prevent data poisoning attacks, i.e., a bounded number of fake users provably cannot affect the system's performance no matter how the fake users craft their rating scores. Task 3 is to develop methods to detect the fake users in data poisoning attacks with provable guarantees and efficiently recover a recommender system from data poisoning attacks. The project will provide research opportunities for students with backgrounds that are traditionally underrepresented in computing, and the work will be incorporated into courses at Duke University and West Virginia University and disseminated widely.This project is jointly funded by Secure and Trustworthy Computing (SaTC) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是建立一个安全的推荐系统来对抗数据中毒攻击。 推荐系统在网上很常见,推荐电影,产品,新闻和许多其他类型的项目,以帮助人们找到他们感兴趣的东西并做出决定。 然而,推荐系统对人们行为的影响使它们成为有吸引力的目标:攻击者可以创建假用户,这些假用户以导致系统推荐攻击者比用户更感兴趣的产品的方式对项目进行评级。 这些“数据中毒”攻击威胁到推荐系统的完整性,损害了使用它们的公司和用户。 该项目将开发检测、限制和恢复数据中毒攻击的方法,使推荐系统更能抵抗恶意行为者的操纵,从而更可靠和有用;该方法还将被纳入学生的课程和研究工作中,培养下一代计算机科学家,以构建更强大的机器学习系统。该项目围绕三个主要目标展开。 任务1涉及系统地调查针对数据中毒攻击的推荐系统的安全漏洞,其中攻击者对算法和数据集有不同程度的了解。在任务2中,团队将开发新的推荐算法,可证明可以防止数据中毒攻击,即,有界数量的假用户可以证明不会影响系统的性能,无论假用户如何制作他们的评级分数。任务3是开发方法来检测数据中毒攻击中的虚假用户,并提供可证明的保证,有效地从数据中毒攻击中恢复推荐系统。该项目将为具有传统上在计算领域代表性不足的背景的学生提供研究机会,这项工作将被纳入杜克大学和西弗吉尼亚大学的课程并广泛传播。该项目由安全和可信计算(SaTC)和刺激竞争研究的既定计划(EPSCoR)共同资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FedRecover: Recovering from Poisoning Attacks in Federated Learning using Historical Information
- DOI:10.1109/sp46215.2023.10179336
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Xiaoyu Cao;Jinyuan Jia;Zaixi Zhang;N. Gong
- 通讯作者:Xiaoyu Cao;Jinyuan Jia;Zaixi Zhang;N. Gong
Evading Watermark based Detection of AI-Generated Content
- DOI:10.1145/3576915.3623189
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Zhengyuan Jiang;Jinghuai Zhang;N. Gong
- 通讯作者:Zhengyuan Jiang;Jinghuai Zhang;N. Gong
PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning
- DOI:10.48550/arxiv.2205.06401
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Hongbin Liu;Jinyuan Jia;N. Gong
- 通讯作者:Hongbin Liu;Jinyuan Jia;N. Gong
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Jinyuan Jia;Binghui Wang;Xiaoyu Cao;Hongbin Liu;N. Gong
- 通讯作者:Jinyuan Jia;Binghui Wang;Xiaoyu Cao;Hongbin Liu;N. Gong
PORE: Provably Robust Recommender Systems against Data Poisoning Attacks
- DOI:10.48550/arxiv.2303.14601
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Jinyuan Jia;Yupei Liu;Yuepeng Hu;N. Gong
- 通讯作者:Jinyuan Jia;Yupei Liu;Yuepeng Hu;N. Gong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Gong其他文献
Is the Ethnographic Fact Conquered or Co-Constructed?
- DOI:
10.1007/s11133-025-09601-4 - 发表时间:
2025-04-30 - 期刊:
- 影响因子:2.100
- 作者:
Neil Gong - 通讯作者:
Neil Gong
Between Tolerant Containment and Concerted Constraint: Managing Madness for the City and the Privileged Family
- DOI:
10.1177/0003122419859533 - 发表时间:
2019-07 - 期刊:
- 影响因子:9.1
- 作者:
Neil Gong - 通讯作者:
Neil Gong
Securing the Future of GenAI: Policy and Technology
确保 GenAI 的未来:政策和技术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mihai Christodorescu;Google Ryan;Craven;S. Feizi;Neil Gong;Mia Hoffmann;Somesh Jha;Zhengyuan Jiang;Mehrdad Saberi Kamarposhti;John Mitchell;Jessica Newman;Emelia Probasco;Yanjun Qi;Khawaja Shams;Google Matthew;Turek - 通讯作者:
Turek
“That proves you mad, because you know it not”: impaired insight and the dilemma of governing psychiatric patients as legal subjects
“这证明你疯了,因为你不知道”:洞察力受损和将精神病患者作为法律主体进行治理的困境
- DOI:
10.1007/s11186-017-9288-0 - 发表时间:
2017 - 期刊:
- 影响因子:2.9
- 作者:
Neil Gong - 通讯作者:
Neil Gong
Neil Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Gong', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Towards Secure Federated Learning
协作研究:SaTC:核心:中:迈向安全的联邦学习
- 批准号:
2131859 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
- 批准号:
1937786 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements
职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强
- 批准号:
1937787 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements
职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强
- 批准号:
1750198 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
- 批准号:
1801584 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant