SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
基本信息
- 批准号:1801584
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning techniques, particularly deep neural networks, are increasingly integrated into safety and security-critical applications such as autonomous driving, precision health care, intrusion detection, malware detection, and spam filtering. A number of studies have shown that these models can be vulnerable to adversarial evasion attacks where the attacker makes small, carefully crafted changes to normal examples in order to trick the model into making incorrect decisions. This project's goal is to develop formal understandings of and defenses against these vulnerabilities through characterizing the relationship between adversarial and non-adversarial examples, developing mechanisms that exploit this relationship to support better detection of adversarial examples, and metrics and methods to demonstrate the robustness of machine learning models against them. Together, the theories, algorithms, and metrics developed will improve the robustness of machine learning systems, allowing them to be deployed more securely in mission-critical applications. The team will also make their datasets and source code publicly available and use them in their own courses and research with both graduate and undergraduate students, with particular efforts to include students from underrepresented groups in Science, Technology, Engineering and Math. The work will also support high school outreach programs and summer camps to attract younger students to study machine learning, security, and computer science.The project is organized around three main thrusts that combine to provide a holistic approach to modeling and defending against evasion attacks. The first thrust aims to characterize both normal and adversarial examples via systematic measurement studies. This includes considering different types of regions around specific examples (e.g., metric ball, manifold, and transformation-induced regions) and then characterizing the examples' vulnerability based on a number of algorithms for combining classifications of other examples in the nearby regions. The second thrust focuses on designing robust defenses against adversarial examples by using representative data points in a region, aggregating multiple data points, and using a diverse set of classifiers to reduce the vulnerability induced by using single data points or algorithms. The third thrust involves defining metrics for modeling robustness along with theories and algorithms that leverage those metrics to analyze model robustness. These include lower bounds of adversarial perturbation in metric balls, robustness metrics based on computational costs, analyses of the representativeness of new datasets relative to training data, and methods for leveraging human estimation of adversarialness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习技术,特别是深度神经网络,越来越多地集成到安全和安全关键应用中,如自动驾驶、精确医疗保健、入侵检测、恶意软件检测和垃圾邮件过滤。许多研究表明,这些模型容易受到对抗性规避攻击,即攻击者对正常示例进行精心制作的小更改,以便诱骗模型做出错误的决定。该项目的目标是通过表征对抗性和非对抗性示例之间的关系,开发利用这种关系来支持更好地检测对抗性示例的机制,以及展示机器学习模型对它们的健壮性的度量和方法,来对这些漏洞进行正式的理解和防御。总而言之,开发的理论、算法和指标将提高机器学习系统的健壮性,使其能够更安全地部署在任务关键型应用程序中。该团队还将公开他们的数据集和源代码,并在他们自己的课程和研究生和本科生的研究中使用它们,特别是努力纳入科学、技术、工程和数学领域代表性较低的群体的学生。这项工作还将支持高中外展项目和夏令营,以吸引更年轻的学生学习机器学习、安全和计算机科学。该项目围绕三个主要方面组织,结合起来提供了一种全面的建模和防御逃避攻击的方法。第一个主旨旨在通过系统的测量研究来描述正常和敌对的例子。这包括考虑特定示例周围的不同类型的区域(例如,度量球、流形和变换诱导区域),然后基于用于组合附近区域中的其他示例的分类的多个算法来表征示例的脆弱性。第二个重点是通过使用一个区域中具有代表性的数据点,聚合多个数据点,并使用不同的分类器集来减少使用单个数据点或算法导致的脆弱性,从而设计针对敌意示例的健壮防御。第三个重点涉及定义建模健壮性的指标,以及利用这些指标分析模型健壮性的理论和算法。这些包括公制球中对抗性扰动的下界,基于计算成本的稳健性度量,新数据集相对于训练数据的代表性分析,以及利用人类对对抗性的估计的方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poisoning Attacks to Graph-Based Recommender Systems
- DOI:10.1145/3274694.3274706
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Minghong Fang;Guolei Yang;N. Gong;Jia Liu
- 通讯作者:Minghong Fang;Guolei Yang;N. Gong;Jia Liu
Calibrate: Frequency Estimation and Heavy Hitter Identification with Local Differential Privacy via Incorporating Prior Knowledge
- DOI:10.1109/infocom.2019.8737527
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Jinyuan Jia;N. Gong
- 通讯作者:Jinyuan Jia;N. Gong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Gong其他文献
Is the Ethnographic Fact Conquered or Co-Constructed?
- DOI:
10.1007/s11133-025-09601-4 - 发表时间:
2025-04-30 - 期刊:
- 影响因子:2.100
- 作者:
Neil Gong - 通讯作者:
Neil Gong
Between Tolerant Containment and Concerted Constraint: Managing Madness for the City and the Privileged Family
- DOI:
10.1177/0003122419859533 - 发表时间:
2019-07 - 期刊:
- 影响因子:9.1
- 作者:
Neil Gong - 通讯作者:
Neil Gong
Securing the Future of GenAI: Policy and Technology
确保 GenAI 的未来:政策和技术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mihai Christodorescu;Google Ryan;Craven;S. Feizi;Neil Gong;Mia Hoffmann;Somesh Jha;Zhengyuan Jiang;Mehrdad Saberi Kamarposhti;John Mitchell;Jessica Newman;Emelia Probasco;Yanjun Qi;Khawaja Shams;Google Matthew;Turek - 通讯作者:
Turek
“That proves you mad, because you know it not”: impaired insight and the dilemma of governing psychiatric patients as legal subjects
“这证明你疯了,因为你不知道”:洞察力受损和将精神病患者作为法律主体进行治理的困境
- DOI:
10.1007/s11186-017-9288-0 - 发表时间:
2017 - 期刊:
- 影响因子:2.9
- 作者:
Neil Gong - 通讯作者:
Neil Gong
Neil Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Gong', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Towards Secure Federated Learning
协作研究:SaTC:核心:中:迈向安全的联邦学习
- 批准号:
2131859 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Recommender Systems against Data Poisoning Attacks
协作研究:SaTC:核心:小型:保护推荐系统免受数据中毒攻击
- 批准号:
2125977 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
- 批准号:
1937786 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements
职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强
- 批准号:
1937787 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Graph-Based Security Analytics: New Algorithms, Robustness under Adversarial Settings, and Robustness Enhancements
职业:基于图的安全分析:新算法、对抗设置下的鲁棒性以及鲁棒性增强
- 批准号:
1750198 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
- 批准号:
2318290 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
- 批准号:
2334148 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Hardening Off-the-Shelf Software Against Side Channel Attacks
SaTC:核心:媒介:协作:强化现成软件以抵御侧通道攻击
- 批准号:
2425665 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
- 批准号:
2245224 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
- 批准号:
2247516 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant