FAI: Fairness-Aware Algorithms for Network Analysis
FAI:用于网络分析的公平感知算法
基本信息
- 批准号:1939368
- 负责人:
- 金额:$ 35.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As society becomes increasingly reliant on artificial intelligence (AI) technology, there have been growing concerns whether the decisions generated by the AI systems may lead to discriminatory actions against certain protected groups in the population. These concerns have brought increasing scrutiny into the issue of fairness in AI systems and their underlying machine learning algorithms. To overcome this challenge, the overarching goal of this project is to develop fairness-aware algorithms that can maintain the high utility of decisions generated by the AI systems without discriminating against particular subgroups of the population. Specifically, this research will address fundamental issues of fairness in algorithms that utilize network data in their decision making. Successful completion of this project will not only produce novel algorithms for researchers, but also tools that can help practitioners assess the level of inequality present in social networking platforms. The undergraduate and graduate students who participate in the project will be trained to conduct cutting edge research in AI and network science. The investigators will also seek collaborative partnership with research scientists from the industry to apply the developed methods in order to expand their social impact beyond the academic community.This research fills a major gap in current research on fairness in AI, which has primarily focused on independent and identically distributed (i.i.d.) data. There are still questions remain whether the existing methods are effective when applied to network data. In particular, the link structure of the network often contains information about the protected attributes (e.g., gender, race, or sexual orientation), and thus, must be taken into consideration in the design of fairness-aware machine learning algorithms. To address this issue, the objectives of this project are two-fold: (1) To develop metrics for assessing fairness in network learning algorithms and (2) To design, implement, and evaluate network learning algorithms that consider the tradeoff between fairness and utility of the models for various network analysis tasks and applications (including community detection and link prediction). The innovative methods developed in this project will be a step forward towards bridging the gap between current understanding of fairness in i.i.d. data and its application to network analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着社会越来越依赖人工智能(AI)技术,人们越来越担心人工智能系统产生的决定是否会导致对人口中某些受保护群体的歧视性行动。这些担忧使得人们越来越关注人工智能系统及其底层机器学习算法的公平性问题。为了克服这一挑战,该项目的总体目标是开发公平意识算法,该算法可以保持人工智能系统生成的决策的高实用性,而不会歧视特定的群体。具体来说,这项研究将解决在决策中利用网络数据的算法中的公平性的基本问题。该项目的成功完成不仅将为研究人员提供新的算法,还将为从业人员提供工具,帮助他们评估社交网络平台上存在的不平等程度。参与该项目的本科生和研究生将接受培训,以进行人工智能和网络科学的前沿研究。研究人员还将寻求与行业研究科学家的合作伙伴关系,应用开发的方法,以扩大其对学术界以外的社会影响。这项研究填补了当前人工智能公平性研究的一个重大空白,该研究主要集中在独立和同分布(i.i.d.)数据现有的方法在应用于网络数据时是否有效仍然存在问题。具体地,网络的链路结构通常包含关于受保护属性的信息(例如,性别、种族或性取向),因此,在设计公平感知机器学习算法时必须考虑到这些因素。为了解决这个问题,这个项目的目标有两个方面:(1)开发用于评估网络学习算法公平性的指标;(2)设计、实现和评估网络学习算法,这些算法考虑了各种网络分析任务和应用(包括社区检测和链接预测)的模型的公平性和实用性之间的权衡。本项目中开发的创新方法将是缩小目前对i.i.d.公平性的理解之间的差距的一步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence Propagation for Linear Threshold Model with Graph Neural Networks
- DOI:10.1109/icdmw60847.2023.00149
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Francisco Santos;Anna Stephens;Pang-Ning Tan;A. Esfahanian
- 通讯作者:Francisco Santos;Anna Stephens;Pang-Ning Tan;A. Esfahanian
Bursting the Filter Bubble: Fairness-Aware Network Link Prediction
- DOI:10.1609/aaai.v34i01.5429
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Farzan Masrour;T. Wilson;Heng Yan;P. Tan;A. Esfahanian
- 通讯作者:Farzan Masrour;T. Wilson;Heng Yan;P. Tan;A. Esfahanian
Population Graph Cross-Network Node Classification for Autism Detection Across Sample Groups
- DOI:10.1109/icdmw60847.2023.00050
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Anna Stephens;Francisco Santos;Pang-Ning Tan;A. Esfahanian
- 通讯作者:Anna Stephens;Francisco Santos;Pang-Ning Tan;A. Esfahanian
Fairness-Aware Graph Sampling for Network Analysis
用于网络分析的公平感知图采样
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Masrour, Farzan;Santos, Francisco;Tan, Pang-Ning;Esfahanian, Abdol-Hossein
- 通讯作者:Esfahanian, Abdol-Hossein
Fairness Perception from a Network-Centric Perspective
- DOI:10.1109/icdm50108.2020.00145
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Farzan Masrour;P. Tan;A. Esfahanian
- 通讯作者:Farzan Masrour;P. Tan;A. Esfahanian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pang-Ning Tan其他文献
Review of synthetic aperture radar with deep learning in agricultural applications
农业应用中深度学习的合成孔径雷达综述
- DOI:
10.1016/j.isprsjprs.2024.08.018 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:12.200
- 作者:
Mahya G.Z. Hashemi;Ehsan Jalilvand;Hamed Alemohammad;Pang-Ning Tan;Narendra N. Das - 通讯作者:
Narendra N. Das
Yield estimation from SAR data using patch-based deep learning and machine learning techniques
- DOI:
10.1016/j.compag.2024.109340 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Mahya G.Z. Hashemi;Pang-Ning Tan;Ehsan Jalilvand;Brook Wilke;Hamed Alemohammad;Narendra N. Das - 通讯作者:
Narendra N. Das
Estimating crop biophysical parameters from satellite-based SAR and optical observations using self-supervised learning with geospatial foundation models
使用具有地理空间基础模型的自监督学习从基于卫星的合成孔径雷达(SAR)和光学观测中估算作物生物物理参数
- DOI:
10.1016/j.rse.2025.114825 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:11.400
- 作者:
Mahya G.Z. Hashemi;Hamed Alemohammad;Ehsan Jalilvand;Pang-Ning Tan;Jasmeet Judge;Michael Cosh;Narendra N. Das - 通讯作者:
Narendra N. Das
Pang-Ning Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pang-Ning Tan', 18)}}的其他基金
III: Small: Prediction and Characterization of Extreme Events in Spatio-Temporal Data.
III:小:时空数据中极端事件的预测和表征。
- 批准号:
2006633 - 财政年份:2020
- 资助金额:
$ 35.98万 - 项目类别:
Continuing Grant
III: Small: Robust Algorithms for Multi-Task Learning of Spatio-Temporal Data
III:小:时空数据多任务学习的鲁棒算法
- 批准号:
1615612 - 财政年份:2016
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
III-CTX: Collaborative Research: Spatio-Temporal Data Mining For Global Scale Eco-Climatic Data
III-CTX:协作研究:全球规模生态气候数据的时空数据挖掘
- 批准号:
0712987 - 财政年份:2007
- 资助金额:
$ 35.98万 - 项目类别:
Continuing Grant
相似海外基金
CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning
CRII:CIF:公平意识监督学习的信息论措施
- 批准号:
2246058 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
- 批准号:
2332010 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
- 批准号:
2332011 - 财政年份:2023
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
FAI: A novel paradigm for fairness-aware deep learning models on data streams
FAI:数据流上具有公平意识的深度学习模型的新颖范式
- 批准号:
2147375 - 财政年份:2022
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
Fairness-aware Machine Learing Based on the Modification of Causal Graphs
基于因果图修正的公平感知机器学习
- 批准号:
21H03504 - 财政年份:2021
- 资助金额:
$ 35.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fairness aware data mining for discrimination free decision-making
公平意识数据挖掘以实现无歧视决策
- 批准号:
DP200101210 - 财政年份:2020
- 资助金额:
$ 35.98万 - 项目类别:
Discovery Projects
AI-DCL: EAGER: Fairness-aware Informatics System for Enhancing Disaster Resilience
AI-DCL:EAGER:增强抗灾能力的公平意识信息系统
- 批准号:
1927513 - 财政年份:2019
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
The development of a fairness-aware data-transformation technique and the validation of its effectiveness through a cloudsoucing environment
开发公平感知数据转换技术并通过云采购环境验证其有效性
- 批准号:
18H03300 - 财政年份:2018
- 资助金额:
$ 35.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Fairness-Aware Personalized Recommendations
EAGER:具有公平意识的个性化推荐
- 批准号:
1841138 - 财政年份:2018
- 资助金额:
$ 35.98万 - 项目类别:
Standard Grant
Data Mining Techniequs that aware social fairness
意识到社会公平的数据挖掘技术
- 批准号:
24500194 - 财政年份:2012
- 资助金额:
$ 35.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




