Self-taught learning for land cover mapping of large areas, using multispectral remote sensing data

使用多光谱遥感数据进行大面积土地覆盖绘图的自学学习

基本信息

  • 批准号:
    240015646
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2013
  • 资助国家:
    德国
  • 起止时间:
    2012-12-31 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Earth Observation data play a major role in supporting decision-support systems and monitoring compliance of several multilateral environmental treaties. Land cover maps of remote sensing data are the most commonly used product in this context and the development of feasible and accurate classification strategies is an ongoing research field. Particularly the classification of larger areas is often challenging, e.g., due to the lack of adequate amount of training and validation data. This research project aims on the development of a Self-taught Learning framework for the land cover classification of remote sensing data. The approach enables the use of labeled pixels (i.e., with reference information) and unlabeled pixels from arbitrary scenes and different acquisitions dates. In contrast to semi-supervised frameworks, the unlabeled data can contain unknown and irrelevant classes. Moreover, the classes need not to be explicitly modeled. The developed framework will be used for classifying multispectral remote sensing data from different study sites, e.g., which are characterized by (i) cropland, (ii) forests and (iii) urban land use. The performance of the Self-taught learning framework will be assessed and compared to other methods in term of accuracy and computational complexity.
地球观测数据在支持决策支持系统和监测若干多边环境条约的遵守情况方面发挥着重要作用。遥感数据的土地覆盖图是这方面最常用的产品,制定可行和准确的分类战略是一个正在进行的研究领域。特别是较大区域的分类通常具有挑战性,例如,由于缺乏足够的训练和验证数据。本研究项目旨在为遥感数据的土地覆盖分类开发一个自学框架。该方法使得能够使用标记的像素(即,具有参考信息)和来自任意场景和不同采集日期的未标记像素。与半监督框架相比,未标记数据可能包含未知和不相关的类。此外,类不需要显式建模。所开发的框架将用于对来自不同研究地点的多光谱遥感数据进行分类,其特点是(一)耕地,(二)森林和(三)城市土地使用。将评估自学框架的性能,并在准确性和计算复杂性方面与其他方法进行比较。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shapelet-based sparse image representation for landcover classification of hyperspectral data
Discriminative archetypal self-taught learning for multispectral landcover classification
Shapelet-Based Sparse Representation for Landcover Classification of Hyperspectral Images
基于 Shapelet 的高光谱图像土地覆盖分类的稀疏表示
Landcover classification with self-taught learning on archetypal dictionaries
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Björn Waske其他文献

Professor Dr. Björn Waske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Björn Waske', 18)}}的其他基金

Monitoring farmland abandonment by multitemporal and multisensor remote sensing imagery
利用多时相、多传感器遥感影像监测农田撂荒
  • 批准号:
    194422486
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Research on Japanese Language Education in English-taught Degree Programs in Japan
日本英语授课学位课程中的日语教育研究
  • 批准号:
    19K02895
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-Dimensional Visuospatial Abilities: Can An Innate Skill Be Taught?
三维视觉空间能力:天生的技能可以教授吗?
  • 批准号:
    428965
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
A Meta-analysis of Children's Activity During Physical Education Lessons Taught by Generalist and Specialist Teachers
通才和专科教师体育课中儿童活动的荟萃分析
  • 批准号:
    411987
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Development of Plurilingual Materials for the Team-taught Elementary English Classroom
团队授课的小学英语课堂多语言教材的开发
  • 批准号:
    19K23092
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Understanding working-class student transitions to postgraduate taught education
了解工薪阶层学生向研究生教学教育的过渡
  • 批准号:
    1939329
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Ecological research on relationship between perception of English communication and language use
英语交际感知与语言使用关系的生态学研究
  • 批准号:
    17K02972
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comprehensive Research on the Utilization and Development of Digital Textbooks for Each Teaching Subject Being Taught in Japan
日本各学科数字教科书利用与开发综合研究
  • 批准号:
    26285184
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the reduplicated present taught by Panini
帕尼尼教授的重复现在时研究
  • 批准号:
    26770020
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The study of self-taught musicians in modern Japan
现代日本自学音乐家的研究
  • 批准号:
    24520155
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on the Historical Transition of English Language Learning Methodologies through the Analysis of Self-Taught Books
从自学书籍分析英语语言学习方法的历史变迁
  • 批准号:
    24520637
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了