CoPe EAGER: Multi-Scale Exploration of Nutrient Cycles and its Socio-Economic Impacts in Coastal Areas

CoPe EAGER:沿海地区养分循环及其社会经济影响的多尺度探索

基本信息

  • 批准号:
    1939994
  • 负责人:
  • 金额:
    $ 29.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Excessive nutrients in surface and ocean waters cause nutrient pollution, which is responsible for water quality degradation in more than 60% of coastal rivers, bays, and seas in the U.S. With a continuous nutrient supply, certain phytoplankton species can become disproportionately abundant under distinctive environmental conditions, forming what is commonly known as "red tides". The economic impacts of red tides in the U.S. are estimated to be at least tens of million dollars per year. It is imperative to reduce the risk of red tides and to increase the associated resilience of coastal communities. Research results of this project will be disseminated to a broad audience in multiple communities through outreach to the public and by collaborating with researchers, practitioners, and decision-makers in county, state and federal agencies. This project will support two undergraduate students and one postdoctoral researcher who will be recruited from underrepresented groups in science. The PIs will incorporate the research results into their classroom teaching and curriculum development.This project will conduct innovative interdisciplinary research across the coastline boundary between terrestrial and ocean systems and across the disciplinary boundaries between geosciences, natural, and social sciences. This project will explore the Energy Exascale Earth System Model (E3SM) for simulating nutrient fluxes from a terrestrial system to an ocean system and for linking E3SM-simulated nutrient fluxes to red tide occurrence in support of socio-economic impact assessment. The goal of this project is to explore whether E3SM can be used as a new software to simulate nutrient fluxes at multiple scales for estimating red tide development and persistence and for assessing socio-economic impacts of red tides under various environmental and management scenarios. Additionally, the research team will evaluate whether E3SM can be used as a community tool to facilitate coastal management. The State of Florida has been chosen as the primary study site for this project, yet the model can be used along the US coastline. E3SM and its uses for nutrient pollution study and socio-economic impact assessment can be an emerging software infrastructure for coastal researchers, decision-makers, practitioners, and stakeholders to address coastal nutrient pollution problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表层和海洋沃茨中过量的营养物导致营养物污染,这是美国60%以上的沿海河流、海湾和海洋水质退化的原因。随着营养物的持续供应,某些浮游植物物种在独特的环境条件下会变得不成比例地丰富,形成通常所称的"赤潮"。据估计,美国每年赤潮造成的经济影响至少为数千万美元。当务之急是减少赤潮风险,提高沿海社区的相关复原力。该项目的研究成果将通过向公众宣传以及与县、州和联邦机构的研究人员、从业者和决策者合作,传播给多个社区的广泛受众。该项目将支持两名本科生和一名博士后研究员,他们将从科学界代表性不足的群体中招募。该项目将跨越陆地和海洋系统之间的海岸线界限,以及地球科学、自然科学和社会科学之间的学科界限,开展创新的跨学科研究。本项目将探索能量亿级地球系统模型(E3SM),用于模拟从陆地系统到海洋系统的营养盐通量,并将E3SM模拟的营养盐通量与赤潮发生联系起来,以支持社会经济影响评估。本项目的目标是探索E3SM是否可以作为一种新的软件,用于模拟多尺度的营养盐通量,以估计赤潮的发展和持续性,并评估各种环境和管理情景下的赤潮的社会经济影响。此外,研究小组还将评估E3SM是否可以作为促进沿海管理的社区工具。佛罗里达州已被选为该项目的主要研究地点,但该模型可用于沿着美国海岸线。E3SM及其在营养物污染研究和社会经济影响评估中的应用可以成为沿海研究人员、决策者、从业者和利益相关者解决沿海营养物污染问题的新兴软件基础设施。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Earth system models for regional environmental management of red tide: Prospects and limitations of current generation models and next generation development
  • DOI:
    10.1007/s12665-022-10343-7
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    A. Elshall;M. Ye;S. Kranz;J. Harrington;Xiaojuan Yang;Yongshan Wan;M. Maltrud
  • 通讯作者:
    A. Elshall;M. Ye;S. Kranz;J. Harrington;Xiaojuan Yang;Yongshan Wan;M. Maltrud
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Ye其他文献

Effect of hawk tea (Litsea coreana L.) on the numbers of lactic acid bacteria and flavour compounds of yoghurt
鹰茶(Litsea coreana L.)对酸奶乳酸菌数量和风味物质的影响
  • DOI:
    10.1016/j.idairyj.2011.09.014
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Ming Ye;Dong Liu;Rong Zhang;Liuqing Yang;Jing Wang
  • 通讯作者:
    Jing Wang
Tracing value-added and double counting in sales of foreign affiliates and domestic-owned companies
追踪外国子公司和内资公司销售中的增值和重复计算
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Miroudot;Ming Ye
  • 通讯作者:
    Ming Ye
Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield–energy curve
利用毫米级柱阵列抑制二次电子产额及异常产额-能量曲线的解释
  • DOI:
    10.1088/1674-1056/28/7/077901
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Ming Ye;Peng Feng;Dan Wang;Bai-Peng Song;Yong-Ning He;Wan-Zhao Cui
  • 通讯作者:
    Wan-Zhao Cui
Secondary electron emission characteristics of nanostructured silver surfaces
纳米结构银表面的二次电子发射特性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Dan Wang;Yongning He;Ming Ye;Wenbo Peng;Wanzhao Cui
  • 通讯作者:
    Wanzhao Cui
Development of an integrated global sensitivity analysis strategy for evaluating process sensitivities across single- and multi-models
开发用于评估单个和多个模型中过程敏感性的综合全局敏感性分析策略
  • DOI:
    10.1016/j.jhydrol.2024.132014
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Jing Yang;Yujiao Liu;Heng Dai;Songhu Yuan;Tian Jiao;Zhang Wen;Ming Ye
  • 通讯作者:
    Ming Ye

Ming Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Ye', 18)}}的其他基金

RAPID: Turning a Lake Sinkhole Event into Natural/Man-Made Tracer Experiments and Data Collection Campaign for Advanced Understanding of Karst Hydrogeology and Solute Transport
RAPID:将湖泊天坑事件转化为自然/人造示踪实验和数据收集活动,以进一步了解喀斯特水文地质和溶质输送
  • 批准号:
    1828827
  • 财政年份:
    2018
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Multimodel Bayesian Data-Worth Analysis for Groundwater Remediation Design
合作研究:地下水修复设计的多模型贝叶斯数据价值分析
  • 批准号:
    1552329
  • 财政年份:
    2016
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Impact of Calibration Data on Evaluating Plausibility of Alternative Groundwater Models
校准数据对评估替代地下水模型合理性的影响
  • 批准号:
    0911074
  • 财政年份:
    2009
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
  • 批准号:
    2412345
  • 财政年份:
    2024
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
  • 批准号:
    2400785
  • 财政年份:
    2023
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: A New Explainable Multi-objective Learning Framework for Personalized Dietary Recommendations against Opioid Misuse and Addiction
EAGER:一种新的可解释的多目标学习框架,用于针对阿片类药物滥用和成瘾的个性化饮食建议
  • 批准号:
    2334193
  • 财政年份:
    2023
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: A Novel Multi-Tray Dry Biofilm Reactor for Methane Capture from Air
EAGER:一种新型多盘干式生物膜反应器,用于从空气中捕获甲烷
  • 批准号:
    2331602
  • 财政年份:
    2023
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: Multi-objective generation of synthetic time series data to boost model robustness and data privacy
EAGER:合成时间序列数据的多目标生成,以提高模型的稳健性和数据隐私
  • 批准号:
    2240615
  • 财政年份:
    2023
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
  • 批准号:
    2210011
  • 财政年份:
    2022
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: SSDIM: Synthetic and Simulated Data for American Multi-Modal Energy Systems
EAGER:SSDIM:美国多模式能源系统的综合和模拟数据
  • 批准号:
    2310638
  • 财政年份:
    2022
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
EAGER: Exploring Multi-Modal Deep Learning Systems for Sustainable Connected and Autonomous Vehicles
EAGER:探索可持续互联和自动驾驶汽车的多模态深度学习系统
  • 批准号:
    2132385
  • 财政年份:
    2021
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
  • 批准号:
    2041878
  • 财政年份:
    2020
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Advancing Pedagogy and Inclusivity through Multi-modal Upper Level Geophysics Education
合作研究:EAGER:通过多模式高水平地球物理学教育推进教学法和包容性
  • 批准号:
    2041967
  • 财政年份:
    2020
  • 资助金额:
    $ 29.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了