EAGER: Exploring Multi-Modal Deep Learning Systems for Sustainable Connected and Autonomous Vehicles
EAGER:探索可持续互联和自动驾驶汽车的多模态深度学习系统
基本信息
- 批准号:2132385
- 负责人:
- 金额:$ 29.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Autonomous vehicles have received a lot of attention in recent years, with experimental cars from Waymo, Uber, Tesla, and others being tested on roads. Such vehicles have the potential to eliminate human errors (including distracted driving) that are the cause of more than 90% of all road accidents. The benefits extend beyond safety, e.g., the adoption of self-driving vehicles on U.S. roadways is expected to reduce greenhouse emissions by 87–94% per vehicle by 2030. However, well-publicized recent fatalities and accidents involving self-driving vehicles point to key challenges that remain unaddressed. Recently, connected autonomous vehicles (CAVs) have emerged, with the potential to improve self-driving vehicle safety and fuel economy, by communicating with other vehicles and infrastructure to share information about road hazards, pedestrians, etc. But CAV safety and sustainable operation assurances remain elusive, due to their significantly greater complexity compared to the most advanced vehicles on the roads today. This EAGER proposal will perform critical early exploratory research to lay the foundations of robust sensing, communication, localization, security, and control in CAVs, to enable end-to-end guarantees for real-time safety and sustainable fuel economy. The proposed research will study the susceptibility of state-of-the-art deep machine learning algorithms for sensing, scheduling, localization, anomaly detection, and energy-optimal control to uncertainties from adversarial attacks, sensor faults, timing aberrations, and other sources. For the first time, the impact of uncertainties across individual vehicular subsystems will be quantified on the security, fuel economy, driving performance, and emergent behaviors of the overall CAV system. This exploratory analysis will allow for the realization of powerful new countermeasures to improve uncertainty robustness, predictability, and performance in the “system of deep learning systems” responsible for making decisions in a CAV.By quantifying and overcoming varied and dynamic sources of uncertainty in emerging connected and autonomous vehicles, this project will usher in more robust, safe, and sustainable self-driving vehicles. This outcome will transform ground transportation and modern society, laying the groundwork to eliminate thousands of fatalities on U.S. roads, improving fuel economy, enhancing comfort during transportation, and saving the U.S. economy billions of dollars annually in lost productivity due to accidents and traffic congestion. The research thrusts are foundational and can be applied to a broad range of applications, wherever the emphasis is on creating uncertainty-resilient multi-agent systems, e.g., swarms of unmanned aerial or underwater vehicles. All vehicle drive-cycle datasets and algorithms from the project will be open sourced to further research in the emerging interdisciplinary area of autonomous vehicle safety and sustainability. Research efforts will also be tightly integrated with outreach efforts to include women, underserved, graduate, undergraduate, and K-12 students in research that has a highly positive impact on society.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,自动驾驶汽车受到了广泛关注,Waymo、Uber、特斯拉等公司的实验汽车正在道路上进行测试。这种车辆有可能消除人为错误(包括分心驾驶),这些错误是90%以上道路事故的原因。其益处超出了安全性,例如,到2030年,在美国道路上采用自动驾驶汽车预计将使每辆汽车的温室气体排放量减少87-94%。然而,最近广为人知的涉及自动驾驶汽车的死亡和事故表明,关键挑战仍未得到解决。最近,互联自动驾驶汽车(CAV)已经出现,通过与其他车辆和基础设施通信以共享有关道路危险,行人等的信息,有可能提高自动驾驶汽车的安全性和燃油经济性,但CAV的安全性和可持续运营保证仍然难以捉摸,因为与当今道路上最先进的车辆相比,它们的复杂性要高得多。EAGER计划将进行关键的早期探索性研究,为CAV中强大的传感、通信、定位、安全和控制奠定基础,从而实现端到端的实时安全和可持续燃油经济性保证。拟议的研究将研究用于传感、调度、定位、异常检测和能量最优控制的最先进的深度机器学习算法对来自对抗性攻击、传感器故障、定时偏差和其他来源的不确定性的敏感性。第一次,将量化单个车辆子系统的不确定性对整个CAV系统的安全性、燃油经济性、驾驶性能和紧急行为的影响。这种探索性的分析将允许实现强大的新对策,以提高负责在CAV中做出决策的“深度学习系统系统”的不确定性鲁棒性,可预测性和性能。通过量化和克服新兴互联和自动驾驶汽车中各种动态的不确定性来源,该项目将迎来更强大,安全和可持续的自动驾驶汽车。这一成果将改变地面交通和现代社会,为消除美国道路上的数千起死亡事故奠定基础,提高燃油经济性,提高运输过程中的舒适性,并为美国经济每年节省数十亿美元的事故和交通拥堵造成的生产力损失。研究的重点是基础性的,可以应用于广泛的应用,无论重点是创建不确定性弹性多智能体系统,例如,成群的无人驾驶飞行器或水下航行器。该项目的所有车辆驾驶循环数据集和算法都将开源,以进一步研究自动驾驶汽车安全和可持续性这一新兴的跨学科领域。研究工作也将与外展工作紧密结合,以包括妇女,服务不足,研究生,本科生和K-12学生的研究,对社会产生高度积极的影响。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Siamese Neural Encoders for Long-Term Indoor Localization with Mobile Devices
- DOI:10.23919/date54114.2022.9774611
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Saideep Tiku;S. Pasricha
- 通讯作者:Saideep Tiku;S. Pasricha
TENET: Temporal CNN with Attention for Anomaly Detection in Automotive Cyber-Physical Systems
- DOI:10.1109/asp-dac52403.2022.9712524
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:S. V. Thiruloga;Vipin Kumar Kukkala;S. Pasricha
- 通讯作者:S. V. Thiruloga;Vipin Kumar Kukkala;S. Pasricha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudeep Pasricha其他文献
Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system
- DOI:
10.1016/j.suscom.2014.08.001 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:
- 作者:
Bhavesh Khemka;Ryan Friese;Sudeep Pasricha;Anthony A. Maciejewski;Howard Jay Siegel;Gregory A. Koenig;Sarah Powers;Marcia Hilton;Rajendra Rambharos;Steve Poole - 通讯作者:
Steve Poole
Enabling heterogeneous cycle-based and event-driven simulation in a design flow integrated using the SPIRIT consortium specifications
- DOI:
10.1007/s10617-007-9003-x - 发表时间:
2007-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Chulho Shin;Peter Grun;Nizar Romdhane;Christopher Lennard;Gabor Madl;Sudeep Pasricha;Nikil Dutt;Mark Noll - 通讯作者:
Mark Noll
Sudeep Pasricha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudeep Pasricha', 18)}}的其他基金
DESC:Type I: Sustainable Serverless Computing
DESC:类型 I:可持续无服务器计算
- 批准号:
2324514 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
CC* Compute: HPC Services for the Colorado State University System
CC* 计算:科罗拉多州立大学系统的 HPC 服务
- 批准号:
2201538 - 财政年份:2022
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
Collaborative Research: Workshop Series on Sustainable Computing
协作研究:可持续计算研讨会系列
- 批准号:
2126017 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2019 HPCA/CGO/PPoPP Symposia
2019 年 HPCA/CGO/PPoPP 研讨会 NSF 学生旅费补助
- 批准号:
1854581 - 财政年份:2019
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
SHF: Small: Energy-Efficient and Reliable Communication with Silicon Photonics for Terascale Datacenters-on-Chip
SHF:小型:采用硅光子技术实现兆兆级片上数据中心的节能且可靠的通信
- 批准号:
1813370 - 财政年份:2018
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Enabling Smart Underground Mining with an Integrated Context-Aware Wireless Cyber-Physical Framework
CPS:协同:协作研究:通过集成的上下文感知无线网络物理框架实现智能地下采矿
- 批准号:
1646562 - 财政年份:2016
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
SHF:Medium: Energy Efficient and Stochastically Robust Resource Allocation for Heterogeneous Computing
SHF:Medium:异构计算的节能和随机鲁棒资源分配
- 批准号:
1302693 - 财政年份:2013
- 资助金额:
$ 29.56万 - 项目类别:
Continuing Grant
Cross-Layer Fault Resilience for Interconnection Networks in Multi-core SoCs
多核 SoC 中互连网络的跨层故障恢复
- 批准号:
1252500 - 财政年份:2013
- 资助金额:
$ 29.56万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring Changing Fertility Intentions in China
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
- 批准号:
2412345 - 财政年份:2024
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Exploring early metazoan reef evolution through a multi-scale approach
合作研究:RUI:通过多尺度方法探索早期后生动物礁演化
- 批准号:
2233727 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Exploring early metazoan reef evolution through a multi-scale approach
合作研究:RUI:通过多尺度方法探索早期后生动物礁演化
- 批准号:
2233726 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Standard Grant
Exploring the multi-scaled nature of solar vortices with DKIST
与 DKIST 一起探索太阳涡旋的多尺度性质
- 批准号:
2878221 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Studentship
Exploring the effects of time-restricted feeding on the immune function of obese individuals: a multi-omic approach
探索限时喂养对肥胖个体免疫功能的影响:多组学方法
- 批准号:
MR/X031381/1 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Research Grant
Exploring the association between perinatal maternal mental health, infant brain development and childhood mental health outcomes - a multi-context s
探索围产期母亲心理健康、婴儿大脑发育和儿童心理健康结果之间的关联——多背景研究
- 批准号:
2889005 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Studentship
Maximising the awareness and impact in policy and practice of a multi-method research exploring the classwork of primary-school teaching assistants
最大限度地提高探索小学助教课堂作业的多方法研究对政策和实践的认识和影响
- 批准号:
ES/Y007387/1 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Fellowship
PhD Human Geography: Multi-species justice: exploring the development and application of a transformative concept
人文地理学博士:多物种正义:探索变革概念的发展和应用
- 批准号:
2874083 - 财政年份:2023
- 资助金额:
$ 29.56万 - 项目类别:
Studentship
Narrating Complexity: Exploring Multi-Actor Timelines
叙述复杂性:探索多参与者时间线
- 批准号:
EP/V028871/1 - 财政年份:2022
- 资助金额:
$ 29.56万 - 项目类别:
Research Grant
Exploring new physics via the multi-faceted examination of the lepton number violation
通过对轻子数违规的多方面检查探索新物理学
- 批准号:
21J11444 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows