Constraining Frictional and Low-Temperature Plastic Rheology of Oceanic Lithosphere by Modeling Observations of Load-Induced Deformation from the Hawaiian Islands to Japan Trench

通过模拟从夏威夷群岛到日本海沟的荷载引起的变形观测来约束海洋岩石圈的摩擦和低温塑性流变

基本信息

  • 批准号:
    1940026
  • 负责人:
  • 金额:
    $ 35.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Plate tectonics is arguably the most important physical process of the solid Earth. From the fundamental science point of view, plate tectonics controls the thermal evolution of the Earth by recycling the relatively cold and stiff surface layer (i.e., the crust and lithosphere) to the hot interiors of the Earth's mantle to cause its cooling down with time, which determines the generation of Earth's magnetic field. Plate tectonics is a unique feature to the Earth and does not exist for other terrestrial planets in our solar system. Plate tectonics is suggested to play an important role in regulating the Earth's climate system. Plate tectonics also carves the most important surface topographic features such as ocean basins, mid-ocean ridge systems, and major mountain belts. Plate tectonics dictates that deformation occurs primarily at plate boundaries (i.e., where different plates meet) through earthquakes with volcanism as by-products. However, the cause of plate tectonics remains largely unknown, despite decades of research. This project is aimed at uncovering the physical mechanism for plate tectonics. The key aspect of this project is to formulate state of art physical and dynamic models to integrate the observed deformation caused by earthquakes, topography and gravity anomalies into our understanding of plate tectonics generation. This project will support a PhD student and includes significant international collaboration. The further development a community finite element code for modeling viscoelastic, non-linear deformation of lithosphere and mantle, will be made available to the community through NSF-supported CIG (Computational Infrastructure for Geodynamics).This project seeks to model observations of earthquake deformation, topography and gravity anomalies to constrain lithospheric rheology in both plate interior (i.e., Hawaii) and convergent plate boundary (Japan trench or subduction zone) settings. The project addresses the following three geophysical questions. First, what constraints would the observations of load-induced lithospheric deformation at the Japan trench and Hawaii place on the low-temperature plasticity flow laws and coefficient of friction in these two different tectonic settings? Second, how does lithospheric rheology in the Japan trench compare with that at Hawaii? Considering that the Japan trench is downstream of Hawaii along the Pacific plate motion, does the lithospheric rheology evolve from Hawaii to Japan trench and how? Third, how do the low-temperature plasticity flow laws constrained by the observations at Japan trench and Hawaii compare with those derived from laboratory studies including recent experiments? To answer these questions, this project will carry out the following specific tasks: 1) Estimate seismic strain rate for the Hawaiian region and Japan trench from earthquake information, quantify their uncertainties, and compile other observations including lithospheric deflection near Hawaii and at Japan trench and outer rise and free-air gravity; 2) Formulate loading models for the Japan trench and Hawaii to compute the observables of lithospheric strain rate, topography and gravity for different low-temperature plasticity flow laws and coefficient of friction, and compare them with observations to place constraints on the rheology; 3) Test low-temperature plasticity flow laws from recent experiments, examine the effect of the activation energy and different lithospheric thermal structure on load-induced lithospheric deformation, and re-calibrate the lithospheric yield strength.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
板块构造可以说是固体地球最重要的物理过程。从基础科学的角度来看,板块构造通过回收相对寒冷和坚硬的表层(即,地壳和岩石圈)到地幔的热内部,使其随时间冷却,这决定了地球磁场的产生。板块构造是地球的一个独特特征,在我们太阳系的其他类地行星上不存在。板块构造在调节地球气候系统中起着重要作用。板块构造也雕刻了最重要的地表地形特征,如海洋盆地、洋中脊系统和主要的山脉带。板块构造决定了变形主要发生在板块边界(即,不同板块交汇处)通过地震,火山活动作为副产品。然而,尽管经过几十年的研究,板块构造的原因在很大程度上仍然未知。该项目旨在揭示板块构造的物理机制。该项目的关键方面是制定最先进的物理和动力学模型,将地震,地形和重力异常引起的观测变形纳入我们对板块构造生成的理解中。 该项目将支持一名博士生,并包括重要的国际合作。通过NSF支持的CIG(地球动力学计算基础设施),将进一步开发用于模拟岩石圈和地幔粘弹性非线性变形的社区有限元代码。该项目旨在模拟地震变形,地形和重力异常的观测,以限制板块内部(即,夏威夷)和会聚板块边界(日本海沟或俯冲带)的设置。该项目涉及以下三个地球物理问题。首先,在日本海沟和夏威夷观测到的载荷引起的岩石圈变形对这两种不同构造背景下的低温塑性流动定律和摩擦系数有什么限制?第二,日本海沟的岩石圈流变学与夏威夷相比如何?考虑到日本海槽位于太平洋板块运动沿着夏威夷下游,从夏威夷到日本海槽岩石圈流变性是否演化以及如何演化?第三,日本海沟和夏威夷观测所约束的低温塑性流动定律与包括最近实验在内的实验室研究所导出的定律相比如何?为了回答这些问题,本项目将开展以下具体工作:1)根据地震资料估算夏威夷地区和日本海沟的地震应变率,量化它们的不确定性,并汇编其他观测资料,包括夏威夷附近和日本海沟的岩石圈偏转和外隆以及自由空间重力; 2)建立了日本海沟和夏威夷的载荷模型,计算了不同低温塑性流动规律和摩擦系数下岩石圈应变率、地形和重力的观测值,并将其与观察结果进行比较,以限制流变学; 3)测试最近实验的低温塑性流动规律,考察激活能和不同岩石圈热结构对载荷引起的岩石圈变形的影响,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraints on the Rheology of the Lithosphere From Flexure of the Pacific Plate at the Hawaiian Islands
夏威夷群岛太平洋板块弯曲对岩石圈流变学的约束
  • DOI:
    10.1029/2019gc008819
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bellas, Ashley;Zhong, Shijie;Watts, Anthony
  • 通讯作者:
    Watts, Anthony
Reconciling lithospheric rheology between laboratory experiments, field observations and different tectonic settings
协调实验室实验、现场观测和不同构造环境之间的岩石圈流变学
  • DOI:
    10.1093/gji/ggab382
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Bellas, Ashley;Zhong, Shijie;Watts, Anthony B
  • 通讯作者:
    Watts, Anthony B
CitcomSVE: A Three‐Dimensional Finite Element Software Package for Modeling Planetary Mantle’s Viscoelastic Deformation in Response to Surface and Tidal Loads
CitcomSVE:三维有限元软件包,用于模拟行星地幔响应表面和潮汐载荷的粘弹性变形
  • DOI:
    10.1029/2022gc010359
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhong, Shijie;Kang, Kaixuan;A, Geruo;Qin, Chuan
  • 通讯作者:
    Qin, Chuan
Mantle dynamics on large spatial and temporal scales
大时空尺度上的地幔动力学
  • DOI:
    10.6038/cjg2021p0530
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhong, Shijie
  • 通讯作者:
    Zhong, Shijie
Effects of a Weak Lower Crust on the Flexure of Continental Lithosphere
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shijie Zhong其他文献

The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa
横向变化的冰壳结构对木卫三和木卫二潮汐响应的影响
Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
使用马尔可夫链蒙特卡罗的非线性模型的面向目标贝叶斯最优实验设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijie Zhong;Wanggang Shen;Tommie A. Catanach;Xun Huan
  • 通讯作者:
    Xun Huan
Separation and Purification of Quinolone Alkaloids from the Chinese Herbal Medicine Evodia rutaecarpa (Juss.) Benth by High Performance Counter-Current Chromatography
高效逆流色谱法分离纯化中药吴茱萸中喹诺酮类生物碱
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijie Zhong;Hao;A. Peng;Jie Shi;Shichao He;Shucai Li;Xia Ye;Ming;Li
  • 通讯作者:
    Li
The relationship between gravity anomalies and topography in the Pacific Ocean and its implications for flexural isostasy, mantle viscosity and dynamics
太平洋重力异常与地形之间的关系及其对挠曲均衡、地幔粘度和动力学的影响
  • DOI:
    10.1016/j.epsl.2025.119246
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    An Yang;A.B. Watts;Shijie Zhong
  • 通讯作者:
    Shijie Zhong
Influence of thermochemical piles on topography at Earth's core–mantle boundary
  • DOI:
    10.1016/j.epsl.2007.07.015
  • 发表时间:
    2007-09-30
  • 期刊:
  • 影响因子:
  • 作者:
    Teresa Mae Lassak;Allen K. McNamara;Shijie Zhong
  • 通讯作者:
    Shijie Zhong

Shijie Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shijie Zhong', 18)}}的其他基金

Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica
研究瞬态和非牛顿地幔粘度对冰川均衡调整过程的影响及其对南极 GPS 观测的影响
  • 批准号:
    2333940
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
Contraining the large-scale dynamics and structure of the lower mantle using observations of the geoid, dynamic topography and plate tectonics
利用大地水准面、动态地形和板块构造的观测来约束下地幔的大尺度动力学和结构
  • 批准号:
    1645245
  • 财政年份:
    2017
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Constraining Mantle Rheology at Lithospheric Conditions by Modeling Seamount Induced Deformation and Gravity Anomalies
通过模拟海山引起的变形和重力异常来约束岩石圈条件下的地幔流变
  • 批准号:
    1114168
  • 财政年份:
    2011
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
Investigating the consequences of Supercontinent Pangea assembly and breakup on the time evolution of large-scale mantle thermochemical structures and magmatism
研究超大陆盘古大陆的组装和破碎对大尺度地幔热化学结构和岩浆作用时间演化的影响
  • 批准号:
    1015669
  • 财政年份:
    2010
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Neutrino Geophysics: collaboration between geology and particle physics
CSEDI 合作研究:中微子地球物理学:地质学和粒子物理学之间的合作
  • 批准号:
    0855712
  • 财政年份:
    2009
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Dynamics of the Earth: High resolution mantle convection simulation on petascale computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
  • 批准号:
    0749045
  • 财政年份:
    2007
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
The Formation of Long-wavelength Mantle Structure and Its Relationship to Supercontinent Cycles and True Polar Wander
长波长地幔结构的形成及其与超大陆旋回和真极地漂移的关系
  • 批准号:
    0711366
  • 财政年份:
    2007
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Acquisition of a PC Cluster for Geophysical Modeling
获取用于地球物理建模的 PC 集群
  • 批准号:
    0650957
  • 财政年份:
    2007
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
Constraining Thermo-Chemical Mantle Convection from Observations of Mantle Plumes and Upper Mantle Temperature
从地幔柱和上地幔温度的观测来约束地幔热化学对流
  • 批准号:
    0538255
  • 财政年份:
    2006
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant

相似海外基金

Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
  • 批准号:
    EP/X028771/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Fellowship
Investigation into the distribution of frictional strength on the plate interface and the large-thrust earthquake occurrence by seismic wave theory
地震波理论研究板块界面摩擦力分布及大推力地震发生
  • 批准号:
    23H01271
  • 财政年份:
    2023
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Influence of Double Network, Internetwork Connectivity and Sacrificial Bonds on the Frictional Characteristics of Double Network Hydrogels: Experiments and Modeling
双网络、网络连通性和牺牲键对双网络水凝胶摩擦特性的影响:实验和建模
  • 批准号:
    2154530
  • 财政年份:
    2023
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
Quantitative Analysis of Frictional Contact of Ultrasonic Motors for Robotics Applications
机器人应用超声波电机摩擦接触的定量分析
  • 批准号:
    23KJ0571
  • 财政年份:
    2023
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Far-from-equilibrium surfaces of high entropy alloys: interplay between frictional sliding and corrosion damage
合作研究:高熵合金的非平衡表面:摩擦滑动与腐蚀损伤之间的相互作用
  • 批准号:
    2333517
  • 财政年份:
    2023
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2231705
  • 财政年份:
    2022
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
CAREER: Frictional Financial Markets, Crises and Policies
职业:摩擦性金融市场、危机和政策
  • 批准号:
    2145007
  • 财政年份:
    2022
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Testing Collision Versus Frictional Stress-Drop Models of High-Frequency Earthquake Ground Motions
合作提案:测试高频地震地面运动的碰撞与摩擦应力降模型
  • 批准号:
    2146687
  • 财政年份:
    2022
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Imaging the Spatial and Temporal Evolution of Frictional Asperities Along the Failure Surface of Creeping Landslides to Illuminate the Mechanics of landslide Friction
对蠕动滑坡破坏面摩擦粗糙度的时空演化进行成像,以阐明滑坡摩擦力学
  • 批准号:
    2222149
  • 财政年份:
    2022
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
Understanding the deformation and processes that link ductile flow in the deep continental crust with frictional processes in the upper crustal seismogenic zone
了解将深部大陆地壳中的延性流与上地壳地震带中的摩擦过程联系起来的变形和过程
  • 批准号:
    RGPIN-2020-05658
  • 财政年份:
    2022
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了