Contraining the large-scale dynamics and structure of the lower mantle using observations of the geoid, dynamic topography and plate tectonics
利用大地水准面、动态地形和板块构造的观测来约束下地幔的大尺度动力学和结构
基本信息
- 批准号:1645245
- 负责人:
- 金额:$ 35.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analyzing seismic waves traveling through the inside of the Earth has revealed that the Earth's mantle has a predominately long-wavelength (5000 km) structure. Particularly, the lower mantle beneath the circum-Pacific regions has seismic wave speeds that are relatively fast, while seismic wave speeds in the lower mantle beneath Africa and Pacific are relatively slow. These two seismically slow areas beneath Africa and the Pacific are are considered anomalies, and are most likely hot regions within the mantle because seismic waves travel slower in hot materials. These anomalies are particularly strong near the boundary between the core and mantle (Core-Mantle Boundary or CMB) regions, and are often termed as large low shear-velocity provinces or LLSVPs. The LLSVPs encompass most volcanism and large igneous provinces for the last 200 million years. This pattern in mantle seismic structure also highly correlates with the gravity anomalies at the Earth's surface. Together with seismic studies, geochemical studies also suggest that the LLSVPs may be compositionally different from the bulk of the mantle, being enriched in heavy, incompatible elements such as radioactive elements U and Th. Considering the significant influence of volcanic degassing on Earth's climate and the important effect of mantle viscosity on post-glacial rebound and sea-level change, it is therefore important to understand the dynamics of the long-wavelength mantle convection, the generation of the LLSVPs, and the relationship between the LLSVPs and their surface expression including volcanism and gravity anomalies. The goal of this 3-year project is to seek understanding of these fundamental questions, by analyzing and modeling fluid dynamical processes of mantle convection. This project will also lead to significant improvement in computational techniques in modeling mantle convection via international collaboration with an Australian geodynamicist. The project includes training of a graduate student. The project seeks to address the following three specific questions: 1) Are the LLSVPs purely thermal or thermochemical features? 2) Can the observations of the geoid and dynamic topography be made consistent with stable, thermochemical LLSVPs? 3) Can the long-wavelength mantle structure and convection (e.g., degree-2) be generated dynamically self-consistently with dynamic plates and realistic lithospheric rheology including the low-temperature plasticity? Four tasks for the proposed three-year project include: 1) to seek buoyancy and viscosity structures that explain the geoid, CMB excess ellipticity, and stability of the chemically distinct LLSVPs, by formulating mantle flow models with buoyancy derived from seismic models with compositional effects from the LLSVPs and post-perovskite phase change; 2) to test the hypothesis that the LLSVPs are purely thermal or thermochemical anomalies, using time-dependent convection models with imposed plate motion history; 3) to understand the origin of long-wavelength mantle structures including the LLSVPs, by formulating fully dynamic models of mantle convection with realistic lithospheric rheology; 4) to improve solvers in CitcomS for efficiency and robustness. The project should significantly improve understanding on the origins of the LLSVPs, long-wavelength mantle convection and plate tectonics. The results should have direct implications for studies in other areas beyond geodynamics, including mantle geochemistry, seismology, supercontinent cycles, gravity anomalies, and volcanism.
分析穿过地球内部的地震波,表明地球披着主要具有长波长(5000公里)的结构。特别是,在太平洋区域下方的下层地幔的地震速度相对较快,而非洲和太平洋下层下地幔的地震速度相对较慢。这两个地震速度在非洲和太平洋以下的缓慢地区被认为是异常,并且很可能是地幔中的热区域,因为地震波在热材料中传播的速度较慢。 这些异常在核心和地幔(Core-Handle边界或CMB)区域之间的边界附近特别强,并且通常被称为大型低剪切省或LLSVP。 LLSVP涵盖了过去2亿年的大多数火山和大型火成岩省。地幔地震结构中的这种模式也与地球表面的重力异常高度相关。 与地震研究一起,地球化学研究还表明,LLSVP在组成上可能与大部分地幔有所不同,并富含沉重的,不兼容的元素,例如放射性元素U和TH。因此,考虑到火山脱气对地球气候的重要影响以及地幔粘度对冰川后反弹和海平面变化的重要影响,因此重要的是要了解长波长度对流的动态,LLSVPS的产生的动态,LLSVPS的产生以及LLSVPS和它们的表面表达和包括火山的表达和重力症之间的关系。这个为期三年的项目的目的是通过分析和建模地幔对流的流体动力学过程来寻求对这些基本问题的理解。该项目还将通过与澳大利亚地球动力学家的国际合作来建模对流,从而显着改善计算技术。该项目包括培训研究生。 该项目旨在解决以下三个特定问题:1)LLSVP是纯粹的热化学特征吗? 2)可以使Geoid和动态形态的观察与稳定的热化学LLSVP保持一致吗? 3)长波长的地幔结构和对流(例如,度2)是否可以通过动态板和现实的岩石圈流变学自我一致地产生,包括低温可塑性?拟议的三年项目的四个任务包括:1)寻求浮力和粘度结构,这些结构解释了通过从LLSVPS和llsvps和-perovskite Perovskite阶段的构成效应的自动化模型得出的地幔流模型来解释化学上不同的LLSVPS的地震流量模型,从而解释了Geoid,CMB过多的椭圆性和稳定性; 2)测试LLSVP的假设是使用具有施加板运动历史的时间依赖的对流模型,纯粹是热化异常。 3)通过以逼真的岩石圈流变学制定全动态模型,了解包括LLSVP在内的长波长地幔结构的起源; 4)提高citcom中的求解器以提高效率和鲁棒性。该项目应显着提高人们对LLSVP,长波长对流和板块构造的起源的理解。结果应直接对除地球动力学以外的其他领域的研究具有直接影响,包括地幔地球化学,地震学,超大陆周期,重力异常和火山主义。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens
- DOI:10.1029/2019gc008538
- 发表时间:2019-11
- 期刊:
- 影响因子:3.7
- 作者:Chuan Huang;Nan Zhang;Zheng‐Xiang Li;M. Ding;Z. Dang;A. Pourteau;S. Zhong
- 通讯作者:Chuan Huang;Nan Zhang;Zheng‐Xiang Li;M. Ding;Z. Dang;A. Pourteau;S. Zhong
The source location of mantle plumes from 3D spherical models of mantle convection
- DOI:10.1016/j.epsl.2017.08.033
- 发表时间:2017-11-15
- 期刊:
- 影响因子:5.3
- 作者:Li, Mingming;Zhong, Shijie
- 通讯作者:Zhong, Shijie
Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation
- DOI:10.1016/j.pepi.2018.01.010
- 发表时间:2018-04
- 期刊:
- 影响因子:2.3
- 作者:Mingming Li;S. Zhong;P. Olson
- 通讯作者:Mingming Li;S. Zhong;P. Olson
Formation of Horizontally Deflected Slabs in the Mantle Transition Zone Caused by Spinel‐to‐Post‐Spinel Phase Transition, Its Associated Grainsize Reduction Effects, and Trench Retreat
- DOI:10.1029/2021gl093679
- 发表时间:2021-07
- 期刊:
- 影响因子:5.2
- 作者:W. Mao;S. Zhong
- 通讯作者:W. Mao;S. Zhong
Lateral Motion of Mantle Plumes in 3‐D Geodynamic Models
- DOI:10.1029/2018gl081404
- 发表时间:2019-05
- 期刊:
- 影响因子:5.2
- 作者:Mingming Li;S. Zhong
- 通讯作者:Mingming Li;S. Zhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shijie Zhong其他文献
The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa
横向变化的冰壳结构对木卫三和木卫二潮汐响应的影响
- DOI:
10.1002/2013je004570 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
J. Wahr;J. Wahr;Shijie Zhong - 通讯作者:
Shijie Zhong
Separation of honokiol and magnolol by intermittent counter-current extraction.
间歇逆流萃取分离和厚朴酚和厚朴酚。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:4.1
- 作者:
A. Peng;Haoyu Ye;Jie Shi;Shichao He;Shijie Zhong;Shucai Li;Li - 通讯作者:
Li
Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
使用马尔可夫链蒙特卡罗的非线性模型的面向目标贝叶斯最优实验设计
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shijie Zhong;Wanggang Shen;Tommie A. Catanach;Xun Huan - 通讯作者:
Xun Huan
Separation and Purification of Quinolone Alkaloids from the Chinese Herbal Medicine Evodia rutaecarpa (Juss.) Benth by High Performance Counter-Current Chromatography
高效逆流色谱法分离纯化中药吴茱萸中喹诺酮类生物碱
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Shijie Zhong;Hao;A. Peng;Jie Shi;Shichao He;Shucai Li;Xia Ye;Ming;Li - 通讯作者:
Li
Influence of thermochemical piles on topography at Earth's core–mantle boundary
- DOI:
10.1016/j.epsl.2007.07.015 - 发表时间:
2007-09-30 - 期刊:
- 影响因子:
- 作者:
Teresa Mae Lassak;Allen K. McNamara;Shijie Zhong - 通讯作者:
Shijie Zhong
Shijie Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shijie Zhong', 18)}}的其他基金
Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica
研究瞬态和非牛顿地幔粘度对冰川均衡调整过程的影响及其对南极 GPS 观测的影响
- 批准号:
2333940 - 财政年份:2024
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
EAR - Climate; Investigating Effects of 3-Dimensional and Non-Newtonian Mantle Viscosity on Relative Sea-Level Changes and Deglaciation History Since the Last Glacial Maximum
EAR——气候;
- 批准号:
2222115 - 财政年份:2022
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Constraining Frictional and Low-Temperature Plastic Rheology of Oceanic Lithosphere by Modeling Observations of Load-Induced Deformation from the Hawaiian Islands to Japan Trench
通过模拟从夏威夷群岛到日本海沟的荷载引起的变形观测来约束海洋岩石圈的摩擦和低温塑性流变
- 批准号:
1940026 - 财政年份:2019
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Constraining Mantle Rheology at Lithospheric Conditions by Modeling Seamount Induced Deformation and Gravity Anomalies
通过模拟海山引起的变形和重力异常来约束岩石圈条件下的地幔流变
- 批准号:
1114168 - 财政年份:2011
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Investigating the consequences of Supercontinent Pangea assembly and breakup on the time evolution of large-scale mantle thermochemical structures and magmatism
研究超大陆盘古大陆的组装和破碎对大尺度地幔热化学结构和岩浆作用时间演化的影响
- 批准号:
1015669 - 财政年份:2010
- 资助金额:
$ 35.5万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: Neutrino Geophysics: collaboration between geology and particle physics
CSEDI 合作研究:中微子地球物理学:地质学和粒子物理学之间的合作
- 批准号:
0855712 - 财政年份:2009
- 资助金额:
$ 35.5万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Dynamics of the Earth: High resolution mantle convection simulation on petascale computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
- 批准号:
0749045 - 财政年份:2007
- 资助金额:
$ 35.5万 - 项目类别:
Continuing Grant
The Formation of Long-wavelength Mantle Structure and Its Relationship to Supercontinent Cycles and True Polar Wander
长波长地幔结构的形成及其与超大陆旋回和真极地漂移的关系
- 批准号:
0711366 - 财政年份:2007
- 资助金额:
$ 35.5万 - 项目类别:
Continuing Grant
Acquisition of a PC Cluster for Geophysical Modeling
获取用于地球物理建模的 PC 集群
- 批准号:
0650957 - 财政年份:2007
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Constraining Thermo-Chemical Mantle Convection from Observations of Mantle Plumes and Upper Mantle Temperature
从地幔柱和上地幔温度的观测来约束地幔热化学对流
- 批准号:
0538255 - 财政年份:2006
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
相似国自然基金
面向大模型性能提升的提示词可视调优理论与方法
- 批准号:62302435
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向大规模盲源分离的高维度大尺寸张量分解方法研究
- 批准号:62071082
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
含规模化新能源接入的交直流大电网动态无功储备评估“时间-空间-优化”降维等值方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
面向科学大装置超大规模数据流的定制计算研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
- 批准号:31771484
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 35.5万 - 项目类别:
Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 35.5万 - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant