Collaborative Research: Accelerating the Discovery of Electronic Materials through Human-Computer Active Search
协作研究:通过人机主动搜索加速电子材料的发现
基本信息
- 批准号:1940307
- 负责人:
- 金额:$ 59.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of this project is to accelerate the discovery of materials with tailored electronic properties through human-computer active search. These efforts will lay the groundwork for accelerating materials discovery, and advance the capability to control electronic properties in materials with the potential for profound societal impact. The thermoelectric and photocatalytic materials predicted, synthesized, and characterized in this research can realize societal advances in the space of energy and solar fuels. High-efficiency thermoelectric materials can revolutionize how heat sources are transformed into electrical power by eliminating the traditional intermediate mechanical energy conversions. Earth-abundant light-responsive catalysts are emerging as an alternative to costly, rare metal catalysts to store solar energy as portable liquid fuels, like ethanol. These green reactions are enabling low-cost, carbon-neutral fuels. The team brings together expertise in materials science, chemistry, machine learning, visualization, metadata, and knowledge frameworks to develop multi-fidelity, expert-guided active search strategies within materials science and chemistry. Resonances among the team's existing outreach programs will broaden inclusion of students from underrepresented groups and be moderated via the Alliance for Diversity in Science and Engineering. The work will provide cross-disciplinary training to graduate students and postdocs in all aspects of material informatics, including participating in and leading team efforts, co-mentorship of Ph.D. and postdoctoral researchers, inclusive symposia at national conferences, and a summer workshop focused on the intersection of visualization, machine learning, ontological engineering and materials science. Through enabling the acceleration of the discovery of new materials, this project supports the goals of the Materials Genome Initiative. An interdisciplinary team will create a search framework for scientific discovery that leverages recent advances in material databases, machine learning, visualization, human-machine interaction, and knowledge structures. To broadly assess the efficacy of this approach, the search effort will span the electronic behavior of both molecules and crystalline materials: (i) new organic photocatalysts for solar fuels production and (ii) new thermoelectric materials for electricity generation. Central to this effort is the engagement of domain experts and associated feedback in a human-in-the-loop active search process. Dynamic visualizations will enable the user to (i) understand the underlying reasons why the materials are being suggested and (ii) provide a user steering capability to identify and annotate specific aspects of the explored search space. Domain-expert annotations and feedback will be parsed against a suite of ontologies, further aiding the search process by providing relational insight between features. New molecules and materials will be explored through a combination of first principles calculations and high-throughput, automated experimentation; these results will be incorporated into a continually growing open-access database. Efficiently integrating and directing evolving data-streams from experiment, computation, and human steering during the search will be achieved with a multi-fidelity active search policy. Through enabling the acceleration of the discovery of new materials, this project supports the goals of the Materials Genome Initiative. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Materials Research within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的总体目标是通过人机主动搜索加速发现具有定制电子特性的材料。这些努力将为加速材料发现奠定基础,并提高控制材料电子特性的能力,从而产生深远的社会影响。本研究中预测、合成和表征的热电和光催化材料可以实现能源和太阳能燃料领域的社会进步。高效热电材料可以通过消除传统的中间机械能转换来彻底改变热源转化为电能的方式。 地球上丰富的光响应催化剂正在成为昂贵的稀有金属催化剂的替代品,将太阳能作为便携式液体燃料储存,如乙醇。这些绿色反应使低成本、碳中性燃料成为可能。 该团队汇集了材料科学,化学,机器学习,可视化,元数据和知识框架方面的专业知识,以在材料科学和化学领域开发多保真度,专家指导的主动搜索策略。 该团队现有的外展计划之间的共鸣将扩大来自代表性不足群体的学生的包容性,并通过科学和工程多样性联盟进行协调。 这项工作将提供跨学科的培训,研究生和博士后在材料信息学的各个方面,包括参与和领导团队的努力,共同指导博士。 此外,还举办了一次研讨会,包括在国家会议上举办的包容性研讨会,以及一次夏季研讨会,重点关注可视化、机器学习、本体工程和材料科学的交叉点。通过加速新材料的发现,该项目支持材料基因组计划的目标。一个跨学科的团队将为科学发现创建一个搜索框架,利用材料数据库,机器学习,可视化,人机交互和知识结构的最新进展。为了广泛评估这种方法的有效性,研究工作将涵盖分子和晶体材料的电子行为:(i)用于太阳能燃料生产的新型有机光催化剂和(ii)用于发电的新型热电材料。 这项工作的核心是领域专家的参与和相关的反馈,在一个人在环主动搜索过程。动态可视化将使用户能够(i)理解为什么材料被建议的根本原因,以及(ii)提供用户转向能力以识别和注释所探索的搜索空间的特定方面。领域专家的注释和反馈将根据一套本体进行解析,通过提供特征之间的关系洞察来进一步帮助搜索过程。新的分子和材料将通过第一原理计算和高通量自动化实验的结合进行探索;这些结果将被纳入一个不断增长的开放获取数据库。有效地整合和指导不断变化的数据流从实验,计算和人类转向在搜索过程中将实现与多保真度主动搜索策略。通过加速新材料的发现,该项目支持材料基因组计划的目标。 该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分,由HDR和NSF数学和物理科学理事会材料研究部共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Role of the Perfluoro Effect in the Selective Photochemical Isomerization of Hexafluorobenzene
全氟效应在六氟苯选择性光化学异构化中的作用
- DOI:10.1021/jacs.1c01506
- 发表时间:2021
- 期刊:
- 影响因子:15
- 作者:Cox, Jordan M.;Bain, Matthew;Kellogg, Michael;Bradforth, Stephen E.;Lopez, Steven A.
- 通讯作者:Lopez, Steven A.
Machine-Learning Photodynamics Simulations Uncover the Role of Substituent Effects on the Photochemical Formation of Cubanes
- DOI:10.1021/jacs.1c07725
- 发表时间:2021-12-08
- 期刊:
- 影响因子:15
- 作者:Li, Jingbai;Stein, Rachel;Lopez, Steven A.
- 通讯作者:Lopez, Steven A.
Efficient Discovery of Visible Light-Activated Azoarene Photoswitches with Long Half-Lives Using Active Search
使用主动搜索有效发现可见光激活的长半衰期偶氮芳烃光电开关
- DOI:10.1021/acs.jcim.1c00954
- 发表时间:2021
- 期刊:
- 影响因子:5.6
- 作者:Mukadum, Fatemah;Nguyen, Quan;Adrion, Daniel M.;Appleby, Gabriel;Chen, Rui;Dang, Haley;Chang, Remco;Garnett, Roman;Lopez, Steven A.
- 通讯作者:Lopez, Steven A.
A Theoretical Stereoselectivity Model of Photochemical Denitrogenations of Diazoalkanes Toward Strained 1,3-Dihalogenated Bicyclobutanes
重氮烷光化学脱氮对应变 1,3-二卤双环丁烷的立体选择性理论模型
- DOI:10.1021/acs.joc.0c02905
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Li, Jingbai;Stein, Rachel;Lopez, Steven A.
- 通讯作者:Lopez, Steven A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Lopez其他文献
Two Routes to Team Production: Saturn and Chrysler Compared
团队生产的两种途径:土星和克莱斯勒的比较
- DOI:
10.1111/0019-8676.21997002 - 发表时间:
1997 - 期刊:
- 影响因子:2.3
- 作者:
H. Shaiken;Steven Lopez;Isaac Mankita - 通讯作者:
Isaac Mankita
Global Ethnography: Forces, Connections, and Imaginations in a Postmodern World
全球民族志:后现代世界中的力量、联系和想象力
- DOI:
10.5860/choice.38-5866 - 发表时间:
2000 - 期刊:
- 影响因子:3.4
- 作者:
M. Burawoy;J. Blum;Sheba M. George;Zauzaa Gill;Teresa Gowan;Lynne Haney;Maren Klawiter;Steven Lopez;Sean O’Riain;Mille Thayer - 通讯作者:
Mille Thayer
A qualitative study of an e-commerce organization in transition
转型中的电子商务组织的定性研究
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Patricia Mitchell;Steven Lopez - 通讯作者:
Steven Lopez
Steven Lopez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Lopez', 18)}}的其他基金
CAREER: Multiscale Photodynamics Simulations in Solvated and Crystalline Environments
职业:溶剂化和结晶环境中的多尺度光动力学模拟
- 批准号:
2144556 - 财政年份:2022
- 资助金额:
$ 59.1万 - 项目类别:
Continuing Grant
Chemistry Early Career Investigator Workshop
化学早期职业研究员研讨会
- 批准号:
2219774 - 财政年份:2022
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Intern Experiences and Pathways to Labor Market Entry
博士论文研究:实习经历和进入劳动力市场的途径
- 批准号:
1602772 - 财政年份:2016
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Personal Contacts and Employment Opportunities
博士论文研究:个人联系和就业机会
- 批准号:
1409531 - 财政年份:2014
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: A community platform for accelerating observationally-constrained regional oceanographic modeling
合作研究:框架:加速观测受限区域海洋学建模的社区平台
- 批准号:
2311383 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247891 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247892 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Accelerating the Commercial Readiness of Organic Semiconductor Systems (ACROSS)
合作研究:DMREF:加速有机半导体系统的商业准备(ACROSS)
- 批准号:
2323424 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Accelerating the Commercial Readiness of Organic Semiconductor Systems (ACROSS)
合作研究:DMREF:加速有机半导体系统的商业准备(ACROSS)
- 批准号:
2323422 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: A community platform for accelerating observationally-constrained regional oceanographic modeling
合作研究:框架:加速观测受限区域海洋学建模的社区平台
- 批准号:
2311382 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2348733 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 59.1万 - 项目类别:
Standard Grant