Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware

协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件

基本信息

  • 批准号:
    2247892
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Machine learning (ML) as a service is being overwhelmingly driven by the ever-increasing clients' intelligent data processing needs through the use of cloud servers, where powerful ML models are hosted. Although pervasive, out-sourced ML processing poses real threats to personal or business providers' data privacy. For example, the clients either need to share their sensitive data, such as healthcare records, financial information, with the server, or the server has to disclose the model to the clients. To guarantee privacy, the rise of cryptographic protocols, such as Homomorphic Encryption (HE), Multi-Party Computation (MPC), enable ML analytics directly on the encrypted data. While enticing, there still exists a big gap between the theory and practice, e.g., long latency due to the prohibitively expensive computation or communication overhead over ciphertext. This project aims to practically accelerate the private ML service by offering a full-fledged development of efficient, scalable and encryption-conscious computing paradigms. The project's novelties lie in new ML-specific cryptographic operators, accuracy-preserving and crypto-friendly neural architectures, and pioneered algorithm-hardware co-design methodologies. The project's broader significance and importance are: (1) to advance trustworthy artificial intelligence (AI), one of the national strategic pillars of the National AI Initiative; (2) to deepen the understanding of interactions among cryptography, machine learning and hardware acceleration; (3) to enrich the computer engineering curriculum, and the training of students from diverse backgrounds through relevant programs at Lehigh University, Northeastern University, and the University of Connecticut.The project will develop a multifaceted design paradigm for efficient, scalable and practical algorithm-hardware co-optimized solutions to significantly accelerate privacy-preserving machine learning on hardware platforms such as FPGA. This project consists of three intervening research thrusts: (1) to orchestrate information representation and model sparsity in the encryption domain to fundamentally decrease the memory and computation footprint in the HE inference; (2) to overcome the ultra-high overhead associated with the MPC-based solution through techniques such as encryption-aware model truncation and partial hardware reconfiguration; (3) to search for crypto-friendly and accuracy-preserving neural architectures via jointly optimizing non-linear operation reduction, and closed loop "algorithm-hardware" design space exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)作为一种服务,正在通过使用云服务器(其中托管了强大的ML模型)来满足客户不断增长的智能数据处理需求。虽然普遍存在,但外包的ML处理对个人或企业提供商的数据隐私构成了真实的威胁。例如,客户端要么需要与服务器共享其敏感数据(例如医疗记录、财务信息),要么服务器必须向客户端披露模型。为了保证隐私,加密协议的兴起,如同态加密(HE),多方计算(MPC),可以直接对加密数据进行ML分析。虽然诱人,但理论与实践之间仍存在很大差距,例如,由于在密文上过于昂贵的计算或通信开销而导致的长等待时间。该项目旨在通过提供高效,可扩展和预防意识计算范例的全面开发来实际加速私有ML服务。该项目的新颖之处在于新的ML特定的加密运算符,保持准确性和加密友好的神经架构,以及开创性的算法硬件协同设计方法。该项目更广泛的意义和重要性是:(1)推进值得信赖的人工智能(AI),这是国家人工智能计划的国家战略支柱之一;(2)加深对密码学,机器学习和硬件加速之间相互作用的理解;(3)丰富计算机工程课程,以及通过利哈伊大学、东北大学和康涅狄格大学的相关项目对来自不同背景的学生进行培训。该项目将开发一个多方面的设计范例,可扩展且实用的算法-硬件协同优化解决方案,可显著加速FPGA等硬件平台上的隐私保护机器学习。该项目包括三个研究方向:(1)在加密域中协调信息表示和模型稀疏性,以从根本上减少HE推理中的内存和计算占用;(2)通过防御感知模型截断和部分硬件重构等技术,克服与基于MPC的解决方案相关的超高开销;(3)通过联合优化非线性运算简化和闭环“算法-硬件”设计空间探索,寻找加密友好和保持准确性的神经架构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MirrorNet: A TEE-Friendly Framework for Secure On-Device DNN Inference
HammerDodger: A Lightweight Defense Framework against RowHammer Attack on DNNs
SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ran Ran-Ran;Xinwei Luo;Wei Wang;Tao Liu;Gang Quan;Xiaolin Xu;Caiwen Ding;Wujie Wen
  • 通讯作者:
    Ran Ran-Ran;Xinwei Luo;Wei Wang;Tao Liu;Gang Quan;Xiaolin Xu;Caiwen Ding;Wujie Wen
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
  • DOI:
    10.1109/iccv51070.2023.00478
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongwu Peng;Shaoyi Huang;Tong Zhou;Yukui Luo;Chenghong Wang;Zigeng Wang;Jiahui Zhao;Xiaowei Xie;Ang Li;Tony Geng;Kaleel Mahmood;Wujie Wen;Xiaolin Xu;Caiwen Ding
  • 通讯作者:
    Hongwu Peng;Shaoyi Huang;Tong Zhou;Yukui Luo;Chenghong Wang;Zigeng Wang;Jiahui Zhao;Xiaowei Xie;Ang Li;Tony Geng;Kaleel Mahmood;Wujie Wen;Xiaolin Xu;Caiwen Ding
Achieving Certified Robustness for Brain-Inspired Low-Dimensional Computing Classifiers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaolin Xu其他文献

URMG: Enhanced CBMG-Based Method for Automatically Testing Web Applications in the Cloud
URMG:基于 CBMG 的增强型云中 Web 应用程序自动测试方法
  • DOI:
    10.1109/tst.2014.6733209
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Xiaolin Xu;Hai Jin;Song Wu;Lixiang Tang;Yihong Wang
  • 通讯作者:
    Yihong Wang
Thermodynamic Modelling of Buried Transformer Substations for Dynamic Loading Capability Assessment Considering Underground Heat Accumulative Effect
考虑地下蓄热效应的地埋变电站动载能力评估热力学模型
The Role of Community-Based Rehabilitation and Community-Based Inclusive Development in Facilitating Access to Justice for Persons with Disabilities Globally
社区康复和社区包容性发展在促进全球残疾人诉诸司法方面的作用
  • DOI:
    10.13169/intljofdissocjus.3.3.0004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Michelle Aldersey;Xiaolin Xu;Venkatesh Balakrishna;Maholo Carolyne Sserunkuma;Alaa Sebeh;Zambrano Olmedo;Reshma Parvin Nuri;Ansha Nega Ahmed
  • 通讯作者:
    Ansha Nega Ahmed
Solid-state deuterium NMR spectroscopy of rhodopsin
视紫红质的固态氘核磁共振波谱
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suchithranga M D C Perera;Xiaolin Xu;Trivikram R. Molugu;A. Struts;Michael F. Brown
  • 通讯作者:
    Michael F. Brown
The Effect of Aromatase on the Reproductive Function of Obese
芳香酶对肥胖者生殖功能的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaolin Xu;Mingqi Sun;Jifeng Ye;D;an Luo;Xiaohui Su;Dongmei Zheng;Li Feng;Ling Gao;Chunxiao Yu;Qingbo Guan
  • 通讯作者:
    Qingbo Guan

Xiaolin Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaolin Xu', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2023 New England Hardware Security Day (NEHWS2023)
旅行:2023 年新英格兰硬件安全日 NSF 学生旅行补助金 (NEHWS2023)
  • 批准号:
    2315830
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CICI:TCR:CAREFREE:Cloud infrAstructure ResiliencE of the Future foR tEstbeds, accelerators and nEtworks
CICI:TCR:CAREFREE:未来测试床、加速器和网络的云基础设施弹性
  • 批准号:
    2319962
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
  • 批准号:
    2326597
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Securing Reconfigurable Hardware Accelerator for Machine Learning: Threats and Defenses
职业:保护用于机器学习的可重新配置硬件加速器:威胁与防御
  • 批准号:
    2239672
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2153690
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
  • 批准号:
    1955337
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
  • 批准号:
    2043183
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
  • 批准号:
    2230609
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了