EAGER: Data-Driven Control of Power Systems using Structured Reinforcement Learning

EAGER:使用结构化强化学习对电力系统进行数据驱动控制

基本信息

  • 批准号:
    1940866
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Over the foreseeable future, the North American power grid is envisioned to evolve as the most complex Internet-of-Things, generating massive volumes of data from thousands of digital sensors. In this modern grid, conventional generation as well as distributed energy resources (DERs) in the form of renewables, energy storage, smart loads, and power electronic converters are foreseen to serve as active endpoints that react and respond proactively to commands driven by these data. To realize this vision, grid operators today must start planning for an infrastructure that not only seeks to install more sensors and actuators, but also bridges the gap between the two, and enables them to transition from data to control. The challenge, however, lies in dodging the curse of dimensionality in both data volume and controller size. Even the simplest control designs today demand cubic numerical complexity, making it almost impossible to learn them in real-time. The objective of this EAGER project is to take a step forward towards addressing this challenge. The goal is to develop machine learning algorithms that translate large volumes of power system data to real-time control actions without running into unacceptably long convergence times. Structured learning algorithms that can scan, recognize, and extract the most useful attributes of large datasets, and at the same time also identify the most vulnerable parts of the grid that need to controlled using that data will be developed to achieve this goal, reducing computation and control time by significant orders of magnitude. On the technical front, the project will study two key questions. First, given Synchrophasor data streaming from hundreds of Phasor Measurement Units, are all spectral components of these data essential for taking a given wide-area control action Or does there exist a low-rank structure of the data that may be enough for the control goal? Second, does every actuator in the grid need to be triggered after a disturbance, or does there exist a certain neighborhood around the source of the disturbance, controlling which may be enough to stabilize the grid with a reasonably good performance? Furthermore, can the outline of this neighborhood be estimated from combinations of online Synchrophasor data and offline archived data from the energy management system? We will integrate ideas from structured compressive sensing, model reduction theory, and adaptive dynamic programming to answer these questions from core machine learning and control-theoretic points of view. Our study will address two critical control applications of Synchrophasors, namely (1) hierarchical frequency control using both conventional generators and DERs, and (2) power oscillation damping of major tie-line flows in the presence of large-scale wind and solar penetrations. The study will promote many new directions of theoretical and experimental research in the application of machine learning for tomorrow?'s power system operations. Workshops and conference tutorials will be organized to train graduate students and power system professionals in Synchrophasor data analytics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可预见的未来,北美电网预计将发展成为最复杂的物联网,从数千个数字传感器产生大量数据。在这个现代电网中,传统发电以及可再生能源、储能、智能负载和电力电子转换器形式的分布式能源(DER)被预见将作为主动端点,对这些数据驱动的命令做出主动反应和响应。为了实现这一愿景,如今的电网运营商必须开始规划基础设施,不仅要安装更多的传感器和执行器,还要弥合两者之间的差距,使它们能够从数据过渡到控制。然而,挑战在于避开数据量和控制器大小的维度灾难。今天,即使是最简单的控制设计也需要立方数值复杂性,这使得几乎不可能实时学习它们。EAGER项目的目标是朝着应对这一挑战迈出一步。其目标是开发机器学习算法,将大量电力系统数据转化为实时控制动作,而不会出现不可接受的长收敛时间。结构化学习算法可以扫描,识别和提取大型数据集的最有用的属性,同时还可以识别需要使用该数据控制的网格中最脆弱的部分,以实现这一目标,从而将计算和控制时间减少显著数量级。在技术方面,该项目将研究两个关键问题。首先,给定来自数百个相量测量单元的同步相量数据流,这些数据的所有频谱分量对于采取给定的广域控制动作是必不可少的吗?或者是否存在足以实现控制目标的低秩数据结构?第二,是否需要在扰动之后触发网格中的每个致动器,或者在扰动源周围是否存在一定的邻域,控制这些邻域可能足以使网格稳定并具有相当好的性能?此外,该邻域的轮廓是否可以从来自能量管理系统的在线同步相量数据和离线存档数据的组合来估计?我们将整合结构化压缩感知,模型简化理论和自适应动态规划的思想,从核心机器学习和控制理论的角度回答这些问题。我们的研究将解决同步相量的两个关键控制应用,即(1)使用传统发电机和DER的分级频率控制,以及(2)在大规模风能和太阳能穿透的情况下,主要联络线流量的功率振荡阻尼。该研究将为未来机器学习应用的理论和实验研究带来许多新的方向。的电力系统运营。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iqbal Husain其他文献

Smart E – Cane for the Visually Challenged and Blind using ML Concepts
Smart E – 使用机器学习概念为视力障碍者和盲人提供手杖
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Filbert Ashwal;K. Dsouza;Muhammad Hashim;Iqbal Husain;Dr. M. Sarada Devi
  • 通讯作者:
    Dr. M. Sarada Devi
Electric and hybrid vehicles : design fundamentals
  • DOI:
    10.1201/b12506
  • 发表时间:
    2003-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iqbal Husain
  • 通讯作者:
    Iqbal Husain
Hierarchical Failure Mode Effect Analysis for the Protection Design of a MV AC-DC Solid State Transformer based EV Extreme Fast Charging Station
基于中压交直流固态变压器的电动汽车极快充电站保护设计的分层故障模式效应分析
Efficiency Enhancement and Current Stress Reduction in ARCP Inverter through Switching Sequence Dependent Control Strategy
通过开关序列相关控制策略提高 ARCP 逆变器的效率并降低电流应力
Torque ripple minimization in switched reluctance motors using adaptive fuzzy control
使用自适应模糊控制最小化开关磁阻电机的扭矩脉动

Iqbal Husain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iqbal Husain', 18)}}的其他基金

REU Site:From the body to the grid: Joint ERC REU explores energy from nano-scale harvesting to smart grid technology
REU 网站:从身体到电网:联合 ERC REU 探索从纳米级采集到智能电网技术的能源
  • 批准号:
    1560283
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Direct-Drive Modular Transverse Flux Electric Machine without Using Rare-Earth Permanent Magnet Material
合作研究:不使用稀土永磁材料的直驱模块化横向磁通电机
  • 批准号:
    1307846
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NSF Engineering Research Center for Future Renewable Electric Energy Delivery and Management (FREEDM) Systems
NSF 未来可再生电能输送和管理 (FREEDM) 系统工程研究中心
  • 批准号:
    0812121
  • 财政年份:
    2008
  • 资助金额:
    $ 22万
  • 项目类别:
    Cooperative Agreement
CAREER: Power Electronics and Motor Drives Technology Enhancement Through Education and Research
职业:通过教育和研究增强电力电子和电机驱动技术
  • 批准号:
    9702370
  • 财政年份:
    1997
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
  • 批准号:
    2324742
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334386
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
  • 批准号:
    2330794
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Exploration of Data-Driven Methods for Cyber Manufacturing
EAGER:探索数据驱动的网络制造方法
  • 批准号:
    2113672
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Accurate Estimation of Indoor Airborne Virus Transmission based on a Novel Multiscale Data-Driven Framework
EAGER:基于新型多尺度数据驱动框架准确估计室内空气传播病毒传播
  • 批准号:
    2134083
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Training Mid-Career Security Professionals in Machine Learning and Data-Driven Cybersecurity
EAGER:SaTC-EDU:在机器学习和数据驱动的网络安全方面培训职业中期安全专业人员
  • 批准号:
    2041970
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Data-driven Physical Model for Hurricanes' Intensity-size Relation
EAGER:飓风强度-大小关系的数据驱动物理模型
  • 批准号:
    2012479
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Data-Driven Susceptible-Exposed-Infected-Recovered-Infected (SEIRI) Modeling and Hospital Planning and Operations for COVID-19 Pandemic
EAGER:针对 COVID-19 大流行的数据驱动的易感-暴露-感染-恢复-感染 (SEIRI) 建模以及医院规划和运营
  • 批准号:
    2027677
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Type I: Liquid metal embrittlement of engineering alloys by eutectic gallium indium: Data-driven experimental design using sequential learning
EAGER:I 型:共晶镓铟引起的工程合金的液态金属脆化:使用顺序学习的数据驱动实验设计
  • 批准号:
    1842650
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了